SHU Chanfang, LI Fei, HAO Weifeng. Geoid/Quasigeoid Fitting Based on Equivalent Point Masses[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 231-234.
Citation: SHU Chanfang, LI Fei, HAO Weifeng. Geoid/Quasigeoid Fitting Based on Equivalent Point Masses[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 231-234.

Geoid/Quasigeoid Fitting Based on Equivalent Point Masses

Funds: 国家自然科学基金资助项目(40974014);国家863计划资助项目(2009AA12Z318,2009AA121401);江苏省高校自然科学研究基金资助项目(10KJB420001);南京工业大学青年教师学术基金资助项目(39713023)
More Information
  • Received Date: December 24, 2010
  • Published Date: February 04, 2011
  • To determine an orthometric height using GPS,it is necessary to know the geoid/ quasigeoid undulation.Many methods have been studied for the interpolation of discrete GPS/leveling data to get the geoid/quasigeoid undulation unknown.A new half free-positioned point masses model is proposed based on equivalent sources theory.Corresponding iterative algorithm to construct the point masses is also presented considering the relationship of the nearest GPS/leveling points.The results in Hong Kong and Shenzhen show that the point masses model is efficient for the interpolation of geoid/quasigeoid undulation.
  • Related Articles

    [1]ZHOU Fangbin, XIAO Zhiwen, LIU Xuejun, MA Guowei, ZHANG Shanshan. Mountain Peak Extraction of Grid DEM Based on Aspect Distribution Feature[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 419-425. DOI: 10.13203/j.whugis20210479
    [2]ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373
    [3]FANG Wenjiang, LI Jingzhong. A Morphing of Linear Feature Based on Shape Context Matching[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 963-967. DOI: 10.13203/j.whugis20150674
    [4]FENG Changqiang, HUA Yixin, CAO Yibing, ZHANG Xiaonan, MA Jian. Automatic Match Between Delimitation Line and Real Terrain Based on Least-cost Path[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1105-1110. DOI: 10.13203/j.whugis20130679
    [5]YANG Jie, SHI Lei, LI Pingxiang. Wishart-H/Alpha Classification Based on Optimal Coherence and Polarimetric Span[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 22-25.
    [6]CAO Weichao, TAO Heping, KONG Bo, LIU Bintao. Topographic Automatic Recognition Based on Optimal Topography Feature Space—Taking Southwest China as an Example[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1376-1380.
    [7]SONG Dunjiang, YUE Tianxiang, DU Zhengping, CHEN Chuanfa. Constructing DEM from Simple Terrain Information Using HASM Method[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1373-1376.
    [8]YIN Shuowen, SHAO Qian. A Method of Topographic Change Detection Base InSAR Terrain Matching Technology[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 118-121.
    [9]WANG Min, LUO Jiancheng, MING Dongping. Extract Ship Targets from High Spatial Resolution Remote Sensed Imagery with Shape Feature[J]. Geomatics and Information Science of Wuhan University, 2005, 30(8): 685-688.
    [10]Wu Jitao, Wang Qiao. A Research on the Quantization and Fractal Model for Polygonal Shape Features on Map[J]. Geomatics and Information Science of Wuhan University, 1995, 20(2): 129-134.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return