ZHAN Yinhu, ZHENG Yong, ZHANG Chao, ZHANG Zhongkai, LI Zhuyang, MA Gaofeng. Spherical Circle Fitting Algorithm and Its Application on Azimuth Determination by Observing the Moon[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1514-1519. DOI: 10.13203/j.whugis20130562
Citation: ZHAN Yinhu, ZHENG Yong, ZHANG Chao, ZHANG Zhongkai, LI Zhuyang, MA Gaofeng. Spherical Circle Fitting Algorithm and Its Application on Azimuth Determination by Observing the Moon[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1514-1519. DOI: 10.13203/j.whugis20130562

Spherical Circle Fitting Algorithm and Its Application on Azimuth Determination by Observing the Moon

Funds: The National Natural Science Foundation of China, No. 41374042.
More Information
  • Received Date: April 25, 2014
  • Published Date: November 04, 2015
  • The Moon is the brightest body in the night sky, and it is of great value to be used to determine the azimuth. However, the key problem is how to solve the center of the apparent Moon accurately. This paper puts forward a new method called spherical circle fitting algorithm to determine the center of the apparent Moon. It has such many merits as strictness, briefness and little calculation in contrast to the existing algorithm. Simulated observation data is processed to understand the relationship between the attitude of the phase of the Moon and fitting accuracy. An experiment based on real observations was used to testify the correctness of the algorithm, and a comparison is made between the spherical circle fitting algorithm and the old algorithm. The results show that while the inner precision is almost the same, the outer accuracy of our algorithm improves by 0.5″. These results suggest that spherical circle fitting algorithm is more suitable for engineering applications.
  • [1]
    Lambrou E, Pantazis G. Astronomical Azimuth Determination by the Hour Angle of Polaris Using Ordinary Total Stations[J]. Survey Review, 2008, 40(308): 164-172
    [2]
    Balodimos D D, Korakitis R, Lambrou E, et al. Fast and Accurate Determination of Astronomical Coordinates Φ, Λ and Azimuth, Using a Total Station and GPS Receiver[J]. Survey Review, 2003, 37(290): 269-275
    [3]
    Zhang Chao, Zheng Yong, Li Changhui. Research on Astronomy Orientation by Using the Random Star[J]. Science of Surveying and Mapping, 2005,30(4): 30-32(张超, 郑勇, 李长会. 用任意星进行天文定向的研究[J].测绘科学,2005,30(4): 30-32)
    [4]
    Zhan Yinhu, Zhang Chao, Hua Yuesheng, et al. Research on Fast Astro-Geodetic Orientation by Observing Planets. Journal of Geomatics Science and Technology, 2011,28(5): 338-341(詹银虎, 张超, 华跃升, 等.利用行星进行快速天文定向[J].测绘科学技术学报,2011,28(5):338-341)
    [5]
    Zhan Yinhu. Theory and Technology Research on Fast Orientation Based on Celestial Bodies[D]. Zhengzhou: Information Engineering University, 2012 (詹银虎.基于自然天体的快速定向理论及技术研究[D]. 郑州:信息工程大学,2012)
    [6]
    Zhan Yinhu, Zhang Chao, Zheng Yong, et al. A Fitting Algorithm of the Apparent Moon Center and Its' Application on Fast Orientation[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 353-358 (詹银虎,张超,郑勇,等.月球视面中心拟合算法及其在测月快速定向中的应用[J].测绘学报,2012,41(3):353-358)
    [7]
    Zhang Hanwei, Xu Houze, Wang Aisheng. The Basic Principal of Measuring Astronomical Longitude, Latitude and Azimuth Angle[J]. Science of Surveying and Mapping, 2006, 31(4): 157-160(张捍卫, 许厚泽, 王爱生. 天文经纬度和天文方位角测定的基本原理[J]. 测绘科学, 2006, 31(4): 157-160)
    [8]
    John B, Wendy P, Kaplan G, et al. User's Guide to NOVAS Version C3.0[R].US Naval Observatory,Washington D C, 2009
    [9]
    Liu Jingnan, Wei Erhu, Huang Jinsong, et al. Applications of Selenodesy to Lunar Detection[J]. Geomatics and Information Science of Wuhan Univers, 2005, 30(2): 95-100(刘经南, 魏二虎, 黄劲松, 等. 月球测绘在月球探测中的应用[J]. 武汉大学学报·信息科学版, 2005, 30(2): 95-100)
    [10]
    Chen Junyong. Progress in Lunar Geodesy[J].Journal of Geodesy and Geodynamics, 2004,24(3): 1-6(陈俊勇.月球大地测量学的进展[J]. 大地测量与地球动力学, 2004, 24(3): 1-6)
    [11]
    Li Fei, Yan Jianguo. Principle and Method of Lunar Gravity Field Determination and Project on Self-determinational Lunar Gravity Field[J]. Geomatics and Information Science of Wuhan Univers, 2007, 32(1): 6-10(李斐, 鄢建国. 月球重力场的确定及构建我国自主月球重力场模型的方案研究[J]. 武汉大学学报·信息科学版, 2007, 32(1): 6-10)
    [12]
    Huang Weibin. Principles and Applications of Contemporary Adjustment[M]. Beijing: People's Liberation Army Press, 1992(黄维彬. 近代平差理论及其应用[M]. 北京: 解放军出版社, 1992)
    [13]
    Gander W, Golub G H, Strebel R. Least-Square Fitting of Circles and Ellipses[J]. BIT Numerical Mathematics, 1994, 34(4): 558-578
    [14]
    Sung J A, Wolfgang R, Hans J W. Least-Squares Orthogonal Distances Fitting of Circle,Sphere,Ellipse,Hyperbola and Parabola[J].Pattern Recognition, 2001, 34: 2 283-2 303
    [15]
    Xia Yifei, Huang Tianyi. Spherical Astronomy[M]. Nanjing: Nanjing University Press, 1995(夏一飞, 黄天衣. 球面天文学 [M]. 南京: 南京大学出版社, 1995)
    [16]
    Zhang Chao. System-level Development and Application Research on Astronomic Surveying System Based on Electronic Theodolites[D]Zhengzhou: Information Engineering University, 2009(张超. 基于电子经纬仪的天文测量系统及应用研究[D]. 郑州: 信息工程大学, 2009)
    [17]
    Hansen P C.Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-posed Problems[J]. Numerical Algorithn, 1994, 6: 1-35
    [18]
    Hansen P C. Analysis of the Discrete Ill-posed Problems by Means of the L-curves[J].SIAM Review, 1992, 34: 561-580
    [19]
    State Bureau of Technology and Quality Supervision. GB/T 17943-2000 Specifications for the Geodetic Astronomy[S]. Beijing: Standards Press of China, 2000(国家质量技术监督局. GB/T 17943-2000大地天文测量规范[S]. 北京: 中国标准出版社, 2000)
  • Cited by

    Periodical cited type(3)

    1. 李青竹,李晶,李志宁,石志勇,文雪忠. 磁梯度张量系统目标探测技术研究进展. 兵工学报. 2024(12): 4205-4230 .
    2. 荆志伟,裴东兴,雒茁君. 基于磁梯度张量不变量的系统非对准误差校正. 国外电子测量技术. 2022(05): 155-158 .
    3. 屈文斌. 基于单片机的磁通门传感器非正交性校正研究. 自动化与仪表. 2020(04): 62-65+69 .

    Other cited types(5)

Catalog

    Article views (1383) PDF downloads (459) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return