TANG Liyu, YANG Yifei, HOU Can, CHEN Chongcheng. Optimizing Radiosity Based on Three-Dimensional Voxel Traversal and GPU for Radiation Simulation Within Virtual Canopy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1256-1263. DOI: 10.13203/j.whugis20160319
Citation: TANG Liyu, YANG Yifei, HOU Can, CHEN Chongcheng. Optimizing Radiosity Based on Three-Dimensional Voxel Traversal and GPU for Radiation Simulation Within Virtual Canopy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1256-1263. DOI: 10.13203/j.whugis20160319

Optimizing Radiosity Based on Three-Dimensional Voxel Traversal and GPU for Radiation Simulation Within Virtual Canopy

Funds: 

The National Natural Science Foundation of China 41471334

the Pilot Project of Fujian Province 2016Y0058

More Information
  • Author Bio:

    TANG Liyu, PhD, professor, majors in geo-visualization and virtual geographical environment, virtual plant. E-mail:tangly@fzu.edu.cn

  • Received Date: February 05, 2017
  • Published Date: August 04, 2018
  • The radiosity is one of the popular algorithms for radiation simulation within a virtual canopy. However, owing to the complexity of plant architecture, enormous computation on computing the form factors has become a serious burden. Thus, a new optimized strategy of radiosity based on CUDA and 3D voxel traversal was developed to improve computation efficiency. Taking simulation of radiation transfer within a virtual Loquat canopy as an example, our proposal is based on uniform partition of bounding box and voxels traversing along a 3D line to identify occlusion between the light source and tree model facets, combining GPU to compute form factor in parallel using CUDA. Furthermore, we adopted reduction algorithm and shared memory to optimize the radiation flux calculation. Compared with serial implementation on CPU, the results are good in terms of execution times with speed-ups about 150. By comparative analysis with ray tracing and traditional radiosity model (progressive refinement radiosity algorithm), the simulation results of PAR distribution are similar and consistent. The results of comparison show that the new method not only improve computation efficiency, but also insure the accuracy.
  • [1]
    谢东辉. 计算机模拟模型的研究与应用[D]. 北京: 北京师范大学, 2005

    Xie Donghui. Study on Computer Simulation Model and Its Applications[D]. Beijing: Beijing Normal University, 2005
    [2]
    Hanrahan P, Salzman D, Aupperle L. A Rapid Hie-rarchical Radiosity Algorithm[J]. ACM Siggraph Computer Graphics, 1991, 25(4):197-206 doi: 10.1145/127719
    [3]
    Bindick S, Stiebler M, Krafczyk M. Fast KD-Tree-Based Hierarchical Radiosity for Radiative Heat Transport Problems[J]. International Journal for Numerical Methods in Engineering, 2011, 86(9):1082-1100 doi: 10.1002/nme.v86.9
    [4]
    李亚峰, 秦开怀.基于硬件加速的反射和折射场景的辐射度方法[J].清华大学学报(自然科学版), 2003, 43(1):94-96 http://www.cqvip.com/QK/93884X/200301/7456901.html

    Li Yafeng, Qin Kaihuai. Hardware-Accelerated Radiosity for Scenes with Reflection and Refraction[J]. Journal of Tsinghua University(Science and Technology), 2003, 43(1):94-96 http://www.cqvip.com/QK/93884X/200301/7456901.html
    [5]
    Padrón E J, Amor M, Bóo M, et al. Parallel Hie-rarchical Radiosity on Hybrid Platforms[J]. Journal of Supercomputing, 2011, 58(3):357-366 doi: 10.1007/s11227-011-0592-6
    [6]
    D'Azevedo E, Hu Z, Su S Q, et al. Solving a Large Scale Radiosity Problem on GPU-Based Parallel Computers[J]. Journal of Computational & Applied Mathematics, 2014, 270(11):109-120
    [7]
    李晓红, 冯志勇, 孙济洲, 等.基于PVM的并行辐射度声学仿真算法[J].天津大学学报, 2004, 37(8):709-712 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tianjdxxb200408013

    Li Xiaohong, Feng Zhiyong, Sun Jizhou, et al. Parallel Radiosity Algorithm of Acoustics Simulation Based on PVM[J]. Journal of Tianjin University, 2004, 37(8):709-712 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tianjdxxb200408013
    [8]
    汪日伟, 邓越凡, 张桦, 等.基于任务映射的并行辐射度算法[J].光电子·激光, 2009, 20(6):835-838 http://www.cqvip.com/QK/92586A/200906/31773668.html

    Wang Riwei, Deng Yuefan, Zhang Hua, et al. A New Parallel Radiosity Algorithm Based on Task Mapping[J]. Journal of Optoelectronics·Laser, 2009, 20(6):835-838 http://www.cqvip.com/QK/92586A/200906/31773668.html
    [9]
    尹灵芝, 朱军, 王金宏, 等. GPU-CA模型下的溃坝洪水演进实时模拟与分析[J].武汉大学学报·信息科学版, 2015, 40(8):1123-1129 http://ch.whu.edu.cn/CN/abstract/abstract3423.shtml

    Yin Lingzhi, Zhu Jun, Wang Jinhong, et al. Real-Time Simulation and Analysis of Dam-Break Flood Routing Based on GPU-CA Model[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8):1123-1129 http://ch.whu.edu.cn/CN/abstract/abstract3423.shtml
    [10]
    刘金硕, 程力, 王丽娜, 等.利用CUDA的剪切波数据三维可视化[J].武汉大学学报·信息科学版, 2013, 38(11):1271-1275 http://ch.whu.edu.cn/CN/Y2013/V38/I11/1271

    Liu Jinshuo, Cheng Li, Wang Lina, et al. 3D Visualization of Shear Wave Data Based on CUDA[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11):1271-1275 http://ch.whu.edu.cn/CN/Y2013/V38/I11/1271
    [11]
    Sanjurjo J R, Amor M, Bóo M, et al. Optimizing Monte Carlo Radiosity on Graphics Hardware[J]. Journal of Supercomputing, 2011, 58(2):177-185 doi: 10.1007/s11227-009-0353-y
    [12]
    侯璨, 唐丽玉, 陈崇成, 等.基于并行辐射度的虚拟植物冠层内光分布模拟[J].系统仿真学报, 2015, 27(10):2337-2343, 2351 http://www.cnki.com.cn/Article/CJFDTotal-FZDZ201106009.htm

    Hou Can, Tang Liyu, Chen Chongcheng, et al. Parallel Radiosity Based Light Distribution Simulation within the Virtual Plant Canopy[J]. Journal of System Simulation, 2015, 27(10):2337-2343, 2351 http://www.cnki.com.cn/Article/CJFDTotal-FZDZ201106009.htm
    [13]
    Tang Liyu, Chen Chongcheng, Zou Jie, et al. Onto Plant: An Integrated Virtual Plant Software Pac-kage for Different Scale Applications[C]. IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, Fuzhou, 2011
    [14]
    林定, 陈崇成, 唐丽玉, 等.基于颜色编码的虚拟树木交互式修剪技术及其实现[J].计算机辅助设计与图形学学报, 2011, 23(11):1799-1807 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjfzsjytxxxb201111002

    Lin Ding, Chen Chongcheng, Tang Liyu, et al. Interactive Pruning Operation on Virtual Tree Based on Color Encoding[J]. Journal of Computer-Aided Design & Computer Graphics, 2011, 23(11):1799-1807 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjfzsjytxxxb201111002
    [15]
    Ashdown I. Radiosit A. Programmer's Perspective[M]. New York: John Wiley & Sons Inc., 1994
    [16]
    Cohen M F, Greenberg D P. The Hemi-cube:A Radiosity Solution for Complex Environments[J]. ACM Siggraph Computer Graphics, 1985, 19(3):31-40 doi: 10.1145/325165
    [17]
    赵权, 黄运保, 孙宇航. CUDA架构下的靶丸辐射能流并行计算[J].计算机辅助设计与图形学学报, 2013, 25(7):937-945 http://mall.cnki.net/magazine/Article/JSJF201307002.htm

    Zhao Quan, Huang Yunbao, Sun Yuhang. CUDA Based Parallel Computation in Thermal Radiation on Implosion Pellet[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(7):937-945 http://mall.cnki.net/magazine/Article/JSJF201307002.htm
    [18]
    张舒, 褚艳利. GPU高性能运算之CUDA[M].北京:中国水利水电出版社, 2009

    Zhang Shu, Chu Yanli. GPU High Performance Arithmetic Operation CUDA[M]. Beijing:China Water & Power Press, 2009
    [19]
    刘勇奎, 沈红, 石教英.一个有效的沿三维直线的体素遍历整数算法[J].计算机学报, 2002, 25(11):1257-1262 doi: 10.3321/j.issn:0254-4164.2002.11.021

    Liu Yongkui, Shen Hong, Shi Jiaoying. An Efficient Integer Algorithm for Traversing Voxels Along 3D Lines[J]. Chinese Journal of Computers, 2002, 25(11):1257-1262 doi: 10.3321/j.issn:0254-4164.2002.11.021
    [20]
    Cook S. CUDA Programming: A Developer's Guide to Parallel Computing with GPUs[M]. Burlington, Massachusetts: Morgan Kaufmann Publishers Inc, 2012
    [21]
    Tang Liyu, Hou Can, Huang Hongyu, et al. Light Interception Efficiency Analysis Based on Three-Dimensional Peach Canopy Models[J]. Ecological Informatics, 2015, 30:60-67 doi: 10.1016/j.ecoinf.2015.09.012
    [22]
    Grant R F, Peters D B, Larson E M. Simulation of Canopy Photosynthesis in Maize and Soybean[J]. Agricultural and Forest Meteorology, 1989, 48(1):75-92
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views (1369) PDF downloads (300) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return