Citation: | ZHU Tingting, LI Fei, ZHANG Shengkai, YUAN Lexian. Rock Outcrop Detection from RADARSAT-1 Datasets Based on Constant False Alarm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1512-1517. DOI: 10.13203/j.whugis20150266 |
[1] |
Hall K, Andre M F. New Insights into Rock Weathering from High-frequency Rock Temperature Data:An Antarctic Study of Weathering by Thermal Stress[J]. Geomorphology, 2001, 41(1):23-35 doi: 10.1016/S0169-555X(01)00101-5
|
[2] |
鄂栋臣, 张辛, 王泽民, 等.利用卫星影像进行南极格罗夫山蓝冰变化监测[J].武汉大学学报·信息科学版, 2011, 36(9):1009-1012 http://ch.whu.edu.cn/EN/Y2011/V36/I9/1009
E Dongchen, Zhang Xin, Wang Zemin, et al. Satellite Monitoring of Blue-ice Extent in Grove Mountains, Antarctica[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9):1009-1012 http://ch.whu.edu.cn/EN/Y2011/V36/I9/1009
|
[3] |
Fretwell P, Pritchard H D, Vaughan D G, et al. Bedmap2:Improved Ice Bed, Surface and Thickness Datasets for Antarctica[J]. The Cryosphere, 2013, 7(1):375-393 doi: 10.5194/tc-7-375-2013
|
[4] |
Liu Hongxing, Jezek K C. A Complete High-resolution Coastline of Antarctica Extracted from Orthorectified Radarsat SAR Imagery[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(5):605-616 doi: 10.14358/PERS.70.5.605
|
[5] |
Jezek K C. Glaciological Properties of the Antarctic Ice Sheet from RADARSAT-1 Synthetic Aperture Radar Imagery[J]. Annals of Glaciology, 1999, 29(11):286-290 http://www.ingentaconnect.com/content/igsoc/agl/1999/00000029/00000001/art00051/references
|
[6] |
Jezek K C. Glaciological Properties of the Antarctic Ice Sheet from RADARSAT-1 Synthetic Aperture Radar Imagery[J]. Annals of Glaciology, 1999, 29(11):286-290 http://www.ingentaconnect.com/content/igsoc/agl/1999/00000029/00000001/art00051/references
|
[7] |
Gao Gui, Liu Li, Zhao Lingjun, et al. An Adaptive and Fast CFAR Algorithm Based on Automatic Censoring for Target Detection in High-resolution SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6):1685-1697 doi: 10.1109/TGRS.2008.2006504
|
[8] |
Qin Xianxiang, Zhou Shilin, Zou Huanxin, et al. A CFAR Detection Algorithm for Generalized Gamma Distributed Background in High-resolution SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 10(4):806-810 doi: 10.1109/LGRS.2012.2224317
|
[9] |
Zhou Jianxiong, Shi Zhiguang, Cheng Xiao, et, al. Automatic Target Recognition of SAR Images Based on Global Scattering Center Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3113-3829 https://www.researchgate.net/publication/220051704_Automatic_Target_Recognition_of_SAR_Images_Based_on_Global_Scattering_Center_Model
|
[10] |
Hofele F X. An Innovative CFARAlgorithm[C]. Radar, 2001 CIE International Conference on, Beijing, 2001
|
[11] |
de Vore M D, Sullivan J A O. Quantitative Statistical Assessment of Conditional Models for Synthetic Aperture Radar[J]. IEEE Transactions on Image Processing, 2004, 13(2):113-125 doi: 10.1109/TIP.2004.823825
|
[1] | ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273 |
[2] | GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071 |
[3] | LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714 |
[4] | YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517 |
[5] | ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182 |
[6] | ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119 |
[7] | ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275 |
[8] | LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062 |
[9] | LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107 |
[10] | FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114 |