FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
Citation: FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036

Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method

Funds: 

The National Natural Science Foundation of China 41531178

The National Natural Science Foundation of China 41501424

the National Natural Science Foundation for Outstanding Youth 41522104

the Natural Science Foundation of Guangdong Province 2014A030312010

More Information
  • Author Bio:

    FU Zisheng, master, specializes in the spatio-temporal analysis and modeling. E-mail:fzs1992@163.com

  • Corresponding author:

    LIU Lin, PhD, professor. E-mail: liulin2@mail.sysu.edu.cn

  • Received Date: September 29, 2016
  • Published Date: September 04, 2017
  • A double-clustering method is proposed for GPS trajectories in urban networks that efficiently identify trajectories with similar spatio-temporal and speed properties. The Spatio-temporal ranges of congested urban road segments are identified based on the trajectory velocity threshold. This paper defines similar queues and designs a DBSCAN based clustering method. By merging similar sub-trajectories into similar queues, the proposed method reduces computation costs. An improved trajectory similarity measure is used to calculate the spatio-temporal distance between similar queues. A C-means clustering method is applied. An experiment is implemented by clustering the floating car trajectories in Guangzhou, China; the results show that the proposed method can not only reflect the change of traffic congestion in space and time, but also improves computational efficiency when dealing with large-scale trajectory data.
  • [1]
    李清泉, 胡波, 乐阳.一种基于约束的最短路径低频浮动车数据地图匹配算法[J].武汉大学学报·信息科学版, 2013, 38(7):805-808 http://ch.whu.edu.cn/CN/abstract/abstract2697.shtml

    Li Qingquan, Hu Bo, Yue Yang. Flowing Car Data Map-Matching Based on Constrained Shortest Path Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):805-808 http://ch.whu.edu.cn/CN/abstract/abstract2697.shtml
    [2]
    Wang Handong, Yue Yang, Li Qingquan. How Many Probe Vehicles Are Enough for Identifying Traffic Congestion? -A Study from a Streaming Data Perspective[J]. Frontiers of Earth Science, 2013, 7(1):34-42 doi: 10.1007/s11707-012-0343-x
    [3]
    孙健, 刘琼, 彭仲仁.城市交通拥挤成因及时空演化规律分析——以深圳市为例[J].交通运输系统工程与信息. 2011, 11(5):86-93 http://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201105014.htm

    Sun Jian, Liu Qiong, Peng Zhongren. Research and Analysis on Causality and Spatial-Temporal Evolution of Urban Traffic Congestions-A Case Study on Shenzhen of China[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(5):86-93 http://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201105014.htm
    [4]
    Wang Jingyuan, Mao Yu, Li Jing, et al. Predictability of Road Traffic and Congestion in Urban Areas[J]. Plos One, 2015, 10(4):e01218254 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388623/figure/pone.0121825.g002/
    [5]
    Xia Ying, Zhang Xu, Wang Guoyin. Cluster-based Congestion Outlier Detection Method on Trajectory Data[C]. The 6th International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 2009
    [6]
    Chengkun L, Kun Q, Chaogui K. Exploring Time-dependent Traffic Congestion Patterns from Taxi Trajectory Data[C]. IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, Fuzhou, China, 2015
    [7]
    Wang Y, Han Q, Pan H. A Clustering Scheme for Trajectories in Road Networks[M].Berlin Heidelberg, Germany:Springer, 2012
    [8]
    Song S, Kwak D, Kwak Y, et al. Segmentation Based Trajectory Clustering in Road Network with Location Sensing Technology[J].Sensor Letters, 2013, 11(9):1779-1782 doi: 10.1166/sl.2013.3009
    [9]
    Zhao Hongbin, Han Qilong, Pan Haiwei. Spatio-Temporal Similarity Measure for Trajectories on Road Networks[J]. Computer Engineering and Applications, 2010, 46(29):9-12
    [10]
    马林兵, 李鹏.基于子空间聚类算法的时空轨迹聚类[J].地理与地理信息科学. 2014, 30(4):7-11 http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201404002.htm

    Ma Linbing, Li Peng. Spatio-Temporal Trajectory Clustering Based on Automatic Subspace Clustering Algorithm[J]. Geography and Geo-Information Science, 2014, 30(4):7-11 http://www.cnki.com.cn/Article/CJFDTOTAL-DLGT201404002.htm
    [11]
    Ester M, Kriegel H P, Sander J, et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. International Conference Knowledge Discovery and Data Mining, Portland, USA, 1996
    [12]
    CJ J37-90. 城市道路设计规范[S]. 北京: 中华人民共和国建设部, 1991

    CJ J37-90. Specification for Design of Urban Road Subgrades[S]. Beijing, China:Ministry of Housing and Urban-Rural Development of the People's Republic of China, 1991
    [13]
    Elnekave S, Last M, Maimon O. Incremental Clustering of Mobile Objects:Data Engineering Workshop[C].International Conference on Data Engineering Workshop, Istanbul, Turkey, 2007
  • Related Articles

    [1]GAO Xiang, PANG Xiaoping, JI Qing. Spatiotemporal Variation of Sea Ice Freeboard in the Antarctic Weddell Sea Based on CryoSat-2 Altimeter Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 125-132. DOI: 10.13203/j.whugis20180504
    [2]DONG Yusen, Chang Hsing-Chung, ZHANG Kui, MA Jiao, WANG Shu, SUN Pan. CryoSat-2 SARIn Interferometric Processing for DEM Generation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 803-809. DOI: 10.13203/j.whugis20150568
    [3]QIANG Qiang, ZHOU Chunxia, LIAO Mingsheng, ZHAO Qiuyang, WANG Zemin. Elevation Change Along the Expedition Route in PANDA Transection of Antarctica from Cryosat-2[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1445-1449. DOI: 10.13203/j.whugis20150271
    [4]JI Qing, PANG Xiaoping, ZHAO Xi, CHENG Zian. Comparison of Sea Ice Thickness Retrieval Algorithms from CryoSat-2 Satellite Altimeter Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1467-1472. DOI: 10.13203/j.whugis20150279
    [5]ZHANG Shengkai, XIAO Feng, LI Fei, E Dongchen, CHENG Xiao. DEM Development and Precision Analysis in Two Local Areas of Antarctica, Using CryoSat-2 Altimetry Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1434-1439. DOI: 10.13203/j.whugis20150274
    [6]GUO Jiming, WANG Wei, CHAO Baichong. Modeling and Realization of GPS IF Signal[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 472-474.
    [7]LIU Youwen, JIANG Weiping, E Dongchen, ZHOU Xiaohui. Ocean Loading Tides Corrections of GPS Stations in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 899-901.
    [8]DANG Yamin, CHENG Chuanlu, CHEN Junyong, ZHANG Peng. GPS Data Processing of the 2005 Qomolangma Height Surveying[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 297-300.
    [9]ZHOU Hongjin, XU Jiangning, MA Heng, BIAN Shaofeng~. Research on Carrier Heading Determination Based on GPS and TPS[J]. Geomatics and Information Science of Wuhan University, 2005, 30(6): 510-513.
    [10]HAN Baomin, OU Jikun QU Guoqing, . GPS Observation Simulation[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 246-250.
  • Cited by

    Periodical cited type(1)

    1. 陈浩,许月萍,郑超昊,郭玉雪. 厄尔尼诺-南方涛动影响下月尺度水文模型参数可移植性. 同济大学学报(自然科学版). 2023(01): 75-82 .

    Other cited types(1)

Catalog

    Article views (2909) PDF downloads (740) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return