QIANG Qiang, ZHOU Chunxia, LIAO Mingsheng, ZHAO Qiuyang, WANG Zemin. Elevation Change Along the Expedition Route in PANDA Transection of Antarctica from Cryosat-2[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1445-1449. DOI: 10.13203/j.whugis20150271
Citation: QIANG Qiang, ZHOU Chunxia, LIAO Mingsheng, ZHAO Qiuyang, WANG Zemin. Elevation Change Along the Expedition Route in PANDA Transection of Antarctica from Cryosat-2[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1445-1449. DOI: 10.13203/j.whugis20150271

Elevation Change Along the Expedition Route in PANDA Transection of Antarctica from Cryosat-2

Funds: 

The Chinese Polar Environment Comprehensive Investigation & Assessment Programme CHINARE2015-02-04

the Public Science and Technology Research Fund Project of Surveying, Mapping and Geoinformation 201412009

the Polar Strategic Foundation 20120107

the Advance Research Program of Civil Aerospace Technology D040103

the National Natural Science Foundation of China 41376187

More Information
  • Author Bio:

    QIANG Qiang, PhD candidate, specializes in the radar altimeter, SAR interferometry. E-mail: qiangqiang.716@163.com

  • Received Date: October 07, 2015
  • Published Date: November 04, 2016
  • Satellite radar altimetry has been widely used to investigate the elevation change and mass balance in the polar region. Compared with traditional radar altimeters, CryoSat can not only provide a denser network of ground tracks but also higher measuring accuracy. However, the long orbit cycle (369 days) of CryoSat is less suited to the conventional cross-over technique that has been applied to longer time series. In this paper, a new method called the near repeat track is proposed and the related data preprocessing of Gross Error Elimination and Backscatter correction are also introduced, based on the data characteristics and the collaborative analysis between CryoSat and EnviSat. Using these methods, the elevation change in the PANDA transection of Antarctica from 2012 to 2014 was extracted and analysed. The result shows an ascending trend of 0.017±0.009m/a that agrees well with the result of other research along the inspection route in the PANDA transection. However, the accumulation of distribution is not uniform. To check the results, the elevation change as presented in this paper is compared with the field measurement data, and the same trend was obtained.
  • [1]
    Zwally H J, Brenner A C, DiMarzio J P. Growth of the Southern Greenland Ice Sheet[J]. Science, 1998, 281(5381):1251-1257 doi: 10.1126/science.281.5381.1251a
    [2]
    Davis C H, Ferguson A C. Elevation Change of the Antarctic Ice Sheet, 1995-2000, from ERS-2 Satellite Radar Altimetry[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2004, 42(11):2437-2445 doi: 10.1109/TGRS.2004.836789
    [3]
    European Space Agency. CryoSat Product Handbook[EB/OL]. University of College London. https://earth.esa.int/documents/10174/125272/CryoSat_Product_Handbook, 2012.
    [4]
    McMillan M, Shepherd A, Sundal A, et al. Increased Ice Losses from Antarctica Detected by CryoSat-2[J]. Geophysical Research Letters, 2014, 41(11):3899-3905 doi: 10.1002/2014GL060111
    [5]
    Wingham D J, Ridout A J, Scharroo R, et al. Antarctic Elevation Change from 1992 to 1996[J]. Science, 1998, 282(5388):456-458 doi: 10.1126/science.282.5388.456
    [6]
    Zwally H J, Bindschadler R A, Brenner A C, et al. Growth of Greenland Ice Sheet:Measurement[J]. Science, 1989, 246(4937):1587-1589 doi: 10.1126/science.246.4937.1587
    [7]
    Legrésy B, Rémy F, Blarel F. Along Track Repeat Altimetry for Ice Sheets and Continental Surface Studies[C]. Proceedings of the Symposium on 15 Years of Progress in Radar Altimetry, Venice, Italy, 2006
    [8]
    Pritchard H D, Arthern R J, Vaughan D G, et al. Extensive Dynamic Thinning on the Margins of the Greenland and Antarctic Ice Sheets[J]. Nature, 2009, 461(7266):971-975 doi: 10.1038/nature08471
    [9]
    Zwally H J, Jun L I, Brenner A C, et al. Greenland Ice Sheet Mass Balance:Distribution of Increased Mass Loss with Climate Warming; 2003-07 Versus 1992-2002[J]. Journal of Glaciology, 2011, 57(201):88-102 doi: 10.3189/002214311795306682
    [10]
    Flament T, Rémy F. Dynamic Thinning of Antarctic Glaciers from Along-track Repeat Radar Altimetry[J]. Journal of Glaciology, 2012, 58(211):830-840 doi: 10.3189/2012JoG11J118
    [11]
    Moholdt G, Nuth C, Hagen J O, et al. Recent Elevation Changes of Svalbard Glaciers Derived from ICESat Laser Altimetry[J]. Remote Sensing of Environment, 2010, 114(11):2756-2767 doi: 10.1016/j.rse.2010.06.008
    [12]
    Rémy F, Legrésy B, Benveniste J. On the Azimuthally Anisotropy Effects of Polarization for Altimetric Measurements[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2006, 44(11):3289-3296 doi: 10.1109/TGRS.2006.878444
    [13]
    Legresy B, Remy F, Schaeffer P. Different ERS Altimeter Measurements Between Ascending and Descending Tracks Caused by Wind Induced Features over Ice Sheets[J]. Geophysical Research Letters, 1999, 26(15):2231-2234 doi: 10.1029/1999GL900531
    [14]
    Armitage T W K, Wingham D J, Ridout A L. Meteorological Origin of the Static Crossover Pattern Present in Low-resolution-mode CryoSat-2 Data over Central Antarctica[J]. Geoscience and Remote Sensing Letters, IEEE, 2014, 11(7):1295-1299 doi: 10.1109/LGRS.2013.2292821
    [15]
    Davis C H, Ferguson A C. Elevation Change of the Antarctic Ice Sheet, 1995-2000, from ERS-2 Satellite Radar Altimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11):2437-2445 doi: 10.1109/TGRS.2004.836789
    [16]
    Wingham D J, Shepherd A, Muir A, et al. Mass Balance of the Antarctic Ice Sheet[J]. Philos Trans R Soc A, 2006, 364(1844):1627-1635 doi: 10.1098/rsta.2006.1792
    [17]
    McMillan M, Shepherd A, Sundal A, et al. Increased Ice Losses from Antarctica Detected by CryoSat-2[J]. Geophysical Research Letters, 2014, 41(11):3899-3905 doi: 10.1002/2014GL060111
    [18]
    Ding Minghu, Xiao Chande, Li Yuansheng, et al. Spatial Variability of Surface Mass Balance Along a Traverse Route from Zhongshan Station to Dome A, Antarctica[J]. Journal of Glaciology, 2011, 57(204):658-666 doi: 10.3189/002214311797409820
  • Related Articles

    [1]Yang Shuwen, Li Yikun, Liu Tao, Yao Huaqin. A New Automatic Water Body Feature Extraction MethodBased on SPOTS Images[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 308-314.
    [2]XU Chuang, LUO Zhicai, LIN Xu, ZHOU Boyang. Automatic Preprocessing of Tidal Gravity Observation Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 157-161.
    [3]XU Aiping, SHENG Wenshun, SHU Hong. Spatiotemporal Interpolation and Cross Validation Based on Product-Sum Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 766-769.
    [4]WANG Zhu, LI Shujun, ZHANG Lihua, LI Ning. A Method for Automatic Routing Based on Route Binary Tree[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 407-410.
    [5]Lin Zongjian, Zhang Jixian. An Algorithm for Automatic Location and Orientation in Pattern Designed Environment[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 351-354,376.
    [6]Deng Dexiang, Li Yulin, Zhong Chengdong. An Advance Probe Method for Automatic Synthesize of Combinational Logic Circuitsc[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 160-162.
    [7]Cheng Kongzhe, Zhu Xinyan, Zhang Yinzhou, Su Guangkui. Study on Automatic Chinese-Label Placement[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 136-141.
    [8]Wang Qiao, Wu Hehai. The Research on Fractal Method of Automatic Generalization of Map Polygons[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 59-63.
    [9]Guo Renzhong, Wh Hehai. A Research on the Automatic Generalization of Urban Settlement on a Topographic Map[J]. Geomatics and Information Science of Wuhan University, 1993, 18(2): 15-22.
    [10]Li Jinxiang, Su Guangkui, Chen Manling. Automatic Monitor System[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 46-54.
  • Cited by

    Periodical cited type(3)

    1. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    2. 刘焕玲,文汉江,徐新禹,赵永奇,蔡剑青. GOCE实测数据反演高阶重力场模型的Torus方法. 测绘学报. 2020(08): 965-973 .
    3. 景小阳,裴婧,许航,解文博. 使用Savitzky—Golay滤波器改进的位场ISVD算法. 工程地球物理学报. 2019(04): 486-493 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return