GAO Xiang, PANG Xiaoping, JI Qing. Spatiotemporal Variation of Sea Ice Freeboard in the Antarctic Weddell Sea Based on CryoSat-2 Altimeter Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 125-132. DOI: 10.13203/j.whugis20180504
Citation: GAO Xiang, PANG Xiaoping, JI Qing. Spatiotemporal Variation of Sea Ice Freeboard in the Antarctic Weddell Sea Based on CryoSat-2 Altimeter Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 125-132. DOI: 10.13203/j.whugis20180504

Spatiotemporal Variation of Sea Ice Freeboard in the Antarctic Weddell Sea Based on CryoSat-2 Altimeter Data

Funds: 

The National Natural Science Foundation of China 41606215

The National Natural Science Foundation of China 41576188

the National Key Research and Development Program of China 2017YFA0603104

More Information
  • Author Bio:

    GAO Xiang, PhD, specializes in sea ice remote sensing. E-mail: xgao@whu.edu.cn

  • Corresponding author:

    JI Qing, PhD, associate professor. E-mail: jiqing@whu.edu.cn

  • Received Date: December 26, 2019
  • Published Date: January 04, 2021
  • In order to improve the estimation accuracy of freeboard of Antarctic sea ice, this paper combined CryoSat-2 altimeter data, ASPeCt ship observational data and IceBridge airborne altimeter data to explore the optimal parameters for freeboard estimation using the minimum method, as well as analyzed spatiotemporal variation of sea ice freeboard from May to October, 2011-2017 in the Weddell sea. The result indicates that the optimal parameter scheme for retrieving freeboard is to apply the average of the lowest 5% measurements as local sea surface height after eliminating the gross data using 0.8 times standard deviation within 10 km segment. Over the past seven years, sea ice freeboard in the Weddell sea presents a slightly thinning trend, and monthly average freeboard ranges from 17.9 cm to 27.4 cm. The distribution of sea ice freeboard of the Weddell sea is characterized by the thick sea ice located in the west Weddell sea and near the Antarctic Peninsula, while thin sea ice distributed in the east Weddell sea. This study could be beneficial for further studying the response of the Antarctic sea ice thickness to climate change.
  • [1]
    Serreze M C, Stroeve J.Arctic Sea Ice Trends, Variability and Implications for Seasonal Ice Forecasting[J].Philosophical Transactions, 2015, 373(2 045):327-336 doi: 10.1098/rsta.2014.0159
    [2]
    Lindsay R W, Schweiger A J B.Arctic Sea Ice Thickness Loss Determined Using Subsurface, Aircraft, and Satellite Observations[J].The Cryosphere, 2015, 9(1):269-283 doi: 10.5194/tc-9-269-2015
    [3]
    Parkinson C, Cavalieri D.Antarctic Sea Ice Variability and Trends, 1979-2010[J].The Cryosphere, 2012, 6(4):871-880 doi: 10.5194/tc-6-871-2012
    [4]
    Laxon S W, Giles K A, Ridout A L, et al.CryoSat-2 Estimates of Arctic Sea Ice Thickness and Volume[J].Geophysical Research Letters, 2013, 40(4):732-737 doi: 10.1002/grl.50193
    [5]
    Laxon S, Peacock N, Smith D.High Interannual Variability of Sea Ice Thickness in the Arctic Region[J].Nature, 2003, 425(6 961):947-949 doi: 10.1038/nature02050
    [6]
    Kwok R, Zwally H J, Yi D.ICESat Observations of Arctic Sea Ice:A First Look[J].Geophysical Research Letters, 2004, 31(16):171-184 doi: 10.1029/2004GL020309
    [7]
    Connor L, Laxon S, McAdoo D, et al.A First Comparison of CryoSat-2 and IceBridge Altimetry from April 20, 2010 over Arctic Sea Ice[C].AGU Fall Meeting, Boston, Massachusetts, USA, 2010
    [8]
    Kurtz N T, Galin N, Studinger M.An Improved CryoSat-2 Sea Ice Freeboard Retrieval Algorithm Through the Use of Waveform Fitting[J].The Cryosphere, 2014, 8(4):1 217-1 237 doi: 10.5194/tc-8-1217-2014
    [9]
    季青, 庞小平, 赵羲, 等.基于CryoSat-2数据的海冰厚度估算算法比较[J].武汉大学学报·信息科学版, 2015, 40(11):1 467-1 472 doi: 10.13203/j.whugis20150279

    Ji Qing, Pang Xiaoping, Zhao Xi, et al.Comparison of Sea Ice Thickness Retrieval Algorithms from CryoSat-2 Satellite Altimeter Data[J].Geomatics and Information Science of Wuhan University, 2015, 40(11):1 467-1 472 doi: 10.13203/j.whugis20150279
    [10]
    王蔓蔓, 柯长青, 邵珠德.基于CryoSat-2卫星测高数据的北极海冰体积估算方法[J].海洋学报, 2017, 39(3):135-144 doi: 10.3969/j.issn.0253-4193.2017.03.013

    Wang Manman, Ke Changqing, Shao Zhude.Arctic Sea Ice Volume Estimation Method Based on CryoSat-2 Satellite Altimeter Data[J].Acta Oceanologica Sinica, 2017, 39(3):135-144 doi: 10.3969/j.issn.0253-4193.2017.03.013
    [11]
    Zwally H J, Yi D, Kwok R, et al.ICESat Measurements of Sea Ice Freeboard and Estimates of Sea Ice Thickness in the Weddell Sea[J].Journal of Geophysical Research Oceans, 2008, 113(C2):228-236 doi: 10.1029/2007JC004284
    [12]
    Xie H, Ackley S F, Yi D, et al.Sea-Ice Thickness Distribution of the Bellingshausen Sea from Surface Measurements and ICESat Altimetry[J].Deep Sea Research Part Ⅱ Topical Studies in Oceanography, 2011, 58(9-10):1 039-1 051 doi: 10.1016/j.dsr2.2010.10.038
    [13]
    Worby A P, Geiger C A, Paget M J, et al.Thickness Distribution of Antarctic Sea Ice[J].Journal of Geophysical Research Oceans, 2008, 113(C5):1 202-1 215 doi: 10.1029/2007JC004254
    [14]
    Kurtz N T, Markus T.Satellite Observations of Antarctic Sea Ice Thickness and Volume[J].Journal of Geophysical Research Oceans, 2012, 117(C8):8 025-8 040 doi: 10.1029/2012JC008141
    [15]
    Kern S, Spreen G.Uncertainties in Antarctic Sea-Ice Thickness Retrieval from ICESat[J].Annals of Glaciology, 2015, 56(69):107-119 doi: 10.3189/2015AoG69A736
    [16]
    Wingham D J, Francis C R, Baker S, et al.CryoSat:A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields[J].Advances in Space Research, 2006, 37(4):841-871 doi: 10.1016/j.asr.2005.07.027
    [17]
    Kawanishi T, Sezai T, Ito Y, et al.The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), Nasda's Contribution to the EOS for Global Energy and Water Cycle Studies[J].IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(2):184-194
    [18]
    Imaoka K, Maeda T, Kachi M, et al.Status of AMSR2 Instrument on GCOM-W1[C].SPIE Asia-Pacific Remote Sensing, Kyoto, Japan, 2012
    [19]
    Comiso J C, Nishio F.Trends in the Sea Ice Cover Using Enhanced and Compatible AMSR-E, SSM/I, and SMMR Data[J].Journal of Geophysical Research Oceans, 2008, 113(C2):228-236 doi: 10.1029/2007JC004257
    [20]
    Sea Ice Conditions During Polarstern Cruise Ant-Xxix/6(Awecs), Alfred Wegener Institute.Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, [EB/OL].https://doi.org/10.1594, 2013
    [21]
    Kwok R, Cunningham G F, Zwally H J, et al.ICESat over Arctic Sea Ice:Interpretation of Altimetric and Reflectivity Profiles[J].Journal of Geophysical Research Oceans, 2006, 111(C06006):1-20 doi: 10.1029/2005JC003175
    [22]
    Xie H, Tekeli A E, Ackley S F, et al.Sea Ice Thickness Estimations from ICESat Altimetry over the Bellingshausen and Amundsen Seas, 2003-2009[J].Journal of Geophysical Research Oceans, 2013, 118(5):2 438-2 453 doi: 10.1002/jgrc.20179
    [23]
    Yi D, Zwally H J, Robbins J W.ICESat Observations of Seasonal and Interannual Variations of Sea-Ice Freeboard and Estimated Thickness in the Weddell Sea, Antarctica (2003-2009)[J].Annals of Glaciology, 2011, 52(57):43-51 doi: 10.3189/172756411795931480
    [24]
    袁乐先, 李斐, 张胜凯, 等.利用ICESat/GLAS数据研究北极海冰干舷高度[J].武汉大学学报·信息科学版, 2016, 41(9):1 176-1 182 doi: 10.13203/j.whugis20150690

    Yuan Lexian, Li Fei, Zhang Shengkai, et al.A Study of Arctic Sea Ice Freeboard Heights from ICESat/GLAS[J].Geomatics and Information Science of Wuhan University, 2016, 41(9):1 176-1 182 doi: 10.13203/j.whugis20150690
    [25]
    Markus T, Massom R, Worby A, et al.Freeboard, Snow Depth and Sea-Ice Roughness in East Antarctica from in Situ and Multiple Satellite Data[J].Annals of Glaciology, 2011, 52(57):242-248 doi: 10.3189/172756411795931570
    [26]
    Deacon G E R.The Weddell Gyre[J].Deep Sea Research Part A Oceanographic Research Papers, 1979, 26(9):981-995 doi: 10.1016/0198-0149(79)90044-X
    [27]
    Willatt R C, Giles K A, Laxon S W, et al.Field Investigations of Ku-Band Radar Penetration into Snow Cover on Antarctic Sea Ice[J].IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(1):365-372 doi: 10.1109/TGRS.2009.2028237
  • Related Articles

    [1]HUO Liang, DUAN Yuanjing, ZHU Yi, SHEN Tao, ZHANG Xiaoyong, ZHAI Jialei, FU Jiying. Multi-scale Expression Method for Urban 3D Model Considering Local Features[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1282-1287. DOI: 10.13203/j.whugis20200148
    [2]LI Jian, ZHOU Qu, CHEN Xiaoling, TIAN Liqiao, LI Tingting. Spatial Scale Study on Quantitative Remote Sensing of Highly Dynamic Coastal/Inland Waters[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 937-942. DOI: 10.13203/j.whugis20160174
    [3]YAN Xiongfeng, AI Tinghua, ZHANG Xiang, YANG Wei. A Vector Pyramid Model to Support Continuous Multi-scale Representation of Spatial Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 502-508. DOI: 10.13203/j.whugis20150723
    [4]NIU Jiqiang, XU Feng, YAO Gaowei, FAN Yong, LIN Hao. Quantitative Evaluation Model of the Uncertainty of Multi-scale Space Topological Relations Based on Rough-Set[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 756-761, 781. DOI: 10.13203/j.whugis20140904
    [5]LIU Pengcheng, AI Tinghua, BI Xu. Multi-scale Representation Model for Contour Based on Fourier Series[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 221-224.
    [6]YOU Hongjian. SAR Change Detection by Multi-scale Segmentation and Optimization[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 531-534.
    [7]CHENG Changxiu. A Multi-scale Spatial Index Method[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 597-601.
    [8]YANG Bisheng, SUN Li. Adaptive Multi-scale Visualizations of Road Network for Navigation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(4): 363-366.
    [9]YANG Zuqiao, GUO Qingsheng. Multi-scale Representation of DEM Based on Lifting Scheme[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 496-498.
    [10]WU Fan, ZHU Guorui. Multi-scale Representation and Automatic Generalization of Relief Based on Wavelet Analysis[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 170-176.
  • Cited by

    Periodical cited type(15)

    1. 肖泽辉,季青,庞小平,闫忠男. 利用海洋2B卫星数据反演南极海冰表面积雪厚度. 测绘地理信息. 2024(06): 64-68 .
    2. 张颖,刘建强,石立坚,蒋城飞. 极地海冰观测卫星的发展现状与展望. 遥感技术与应用. 2024(06): 1339-1352 .
    3. 陈国栋,陈钰,金涛勇,张志杰,李黎. 利用Cryosat-2 SAR模式数据确定北冰洋海平面模型. 大地测量与地球动力学. 2023(06): 606-611+621 .
    4. 于亚冉,王丽华,张梦悦. 基于CryoSat-2的北极海冰类型分类. 测绘与空间地理信息. 2022(01): 147-150 .
    5. 陈国栋,梁圣豪,孟子淇,朱家亨. 利用Cryosat-2数据确定格陵兰冰盖高程和体积变化. 苏州科技大学学报(自然科学版). 2022(01): 66-70+76 .
    6. 屈猛,赵羲,庞小平,雷瑞波. 北极冰间水道区域的物理过程和遥感观测研究进展. 地球科学进展. 2022(04): 382-391 .
    7. 高翔,庞小平,季青. 利用CryoSat-2测高数据研究南极威德尔海海冰出水高度时空变化. 武汉大学学报(信息科学版). 2021(01): 125-132 .
    8. 张婷,张杰,张晰. 基于CryoSat-2数据的2014—2018年北极海冰厚度分析. 海洋科学进展. 2020(03): 425-434 .
    9. 王志勇,王丽华,张晰,孙伟富,刘健. 雷达高度计在海冰厚度探测中的研究进展. 遥感信息. 2020(05): 1-8 .
    10. 满富康,夏文韬,张杰,柯长青. 基于OSI-SAF微波遥感数据的北极一年冰和多年冰研究. 极地研究. 2019(01): 69-83 .
    11. 吴星泉,张胜军,车德福. 利用CryoSat-2卫星测高资料确定北极海冰干舷高. 测绘通报. 2019(07): 64-68 .
    12. 庞小平,刘清全,季青. 北极一年海冰表面积雪深度遥感反演与时序分析. 武汉大学学报(信息科学版). 2018(07): 971-977 .
    13. 蒋广敏,戴利,代欣. 基于改进遗传算法的镀层氧化膜厚度测量研究. 周口师范学院学报. 2018(05): 121-124 .
    14. 王蔓蔓,柯长青,邵珠德. 基于CryoSat-2卫星测高数据的北极海冰体积估算方法. 海洋学报. 2017(03): 135-144 .
    15. 袁乐先,李斐,张胜凯,朱婷婷,左耀文. 利用ICESat/GLAS数据研究北极海冰干舷高度. 武汉大学学报(信息科学版). 2016(09): 1176-1182 .

    Other cited types(20)

Catalog

    Article views PDF downloads Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return