DONG Yusen, Chang Hsing-Chung, ZHANG Kui, MA Jiao, WANG Shu, SUN Pan. CryoSat-2 SARIn Interferometric Processing for DEM Generation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 803-809. DOI: 10.13203/j.whugis20150568
Citation: DONG Yusen, Chang Hsing-Chung, ZHANG Kui, MA Jiao, WANG Shu, SUN Pan. CryoSat-2 SARIn Interferometric Processing for DEM Generation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 803-809. DOI: 10.13203/j.whugis20150568

CryoSat-2 SARIn Interferometric Processing for DEM Generation

Funds: 

The National Natural Science Foundation of China 41001248

The National Natural Science Foundation of China 41404027

the China Geological Survey project 1212011220106

the China Geological Survey project 12120115063201

the Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing KLIGIP201605

More Information
  • Author Bio:

    DONG Yusen, PhD, lecturer, specializes in geological remote sensing and global changing. E-mail:dongyusen@gmail.com

  • Received Date: April 27, 2016
  • Published Date: June 04, 2017
  • The SAR/interferometric radar altimeter (SIARL) on the CryoSat-2 platform is designed to accurately determine the height changes in the Earth's continental and marine ice fields. In addition, its synthetic aperture radar interferometry mode (SARIn) is capable of providing precise three-dimensional measurements. However, SARIn level 2 products provided by the European Space Agency (ESA) do not fully utilize interferometric information. In this paper, the basic principles of the SARIn mode are introduced. By integrating the traditional interferometric synthetic aperture radar (InSAR) technique, a processing scheme is proposed for SARIn level 1b (L1b) data to extract digital elevation models (DEMs). This processing scheme uncludes three steps. Firstly, checking the quality of the input data eliminates erroneous information. Secondly, a starting point for phase unwrapping is determined, based on the magnitude and the coherence of the received signals and a targeted algorithm is accirdingly designed and implemented to unwrap the interferometric phase along the across-track direction on a line-by-line basis. Thirdly, the look angle of the satellite is calculated and used to estimate the 3D information of ground points. After a process of interpolation, DEM are generated. With the use of the proposed scheme, the SARIn L1b data acquired between January 2012 and April 2012 were processed. The ground elevation of Lambert Glacier in Antarctic was mapped and compared to the ICESat DEM and RAMP DEM. The results demonstrate that a DEM generated based on SARIn data can satisfy the research requirements for ice cap mapping in polar areas.
  • [1]
    Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent Warming in Mountain Regions of the World[J]. Nature Climate Change, 2015, 5: 424-430 doi: 10.1038/nclimate2563
    [2]
    Zhou Y, Zhou C, Deng F, et al. Improving InSAR Elevation Models in Antarctica Using Laser Altimetry, Accounting for Ice Motion, Orbital Errors and Atmospheric Delays[J]. Remote Sensing of Environment, 2015, 162: 112-118 doi: 10.1016/j.rse.2015.01.017
    [3]
    董玉森, Ge Linlin, Chang H-C, 等.基于差分雷达干涉测量的矿区地面沉降监测研究[J].武汉大学学报·信息科学版, 2007, 32(10): 888-891 http://ch.whu.edu.cn/CN/abstract/abstract2013.shtml

    Dong Yusen, Ge Linlin, Chang H-C, et al. Mine Subsidence Monitoring by Differential InSAR[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 888-891 http://ch.whu.edu.cn/CN/abstract/abstract2013.shtml
    [4]
    Cook A J, Murray T, Luckman A, et al. A New 100-m Digital Elevation Model of the Antarctic Peninsula Derived from ASTER Global DEM: Methods and Accuracy Assessment[J]. Earth System Science Data, 2012, 4(1): 129-142 doi: 10.5194/essd-4-129-2012
    [5]
    Dong Y, Chen W, Chang H-C, et al. Assessment of Orthoimage and DEM Derived from ZY-3 Stereo Image in Northeastern China[J]. Survey Review, 2015, 48(349):247-257 https://www.researchgate.net/profile/Weitao_Chen2/publication/275722218_Assessment_of_orthoimage_and_DEM_derived_from_ZY-3_stereo_image_in_Northeastern_China/links/569e17ff08ae00e5c990fb1c.pdf?origin=publication_detail
    [6]
    Liu J, Tong X, Liu S, et al. Elevation Change of Lambert-Amery System from ICES at/GLAS Data[C]. 2012 Second International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Shanghai, China, 2012
    [7]
    Helm V, Humbert A, Miller H. Elevation and Elevation Change of Greenland and Antarctica Derived from CryoSat-2[J]. The Cryosphere, 2014, 8(4): 1 539-1 559 doi: 10.5194/tc-8-1539-2014
    [8]
    Mcmillan M, Shepherd A, Sundal A, et al. Increased Ice Losses from Antarctica Detected by CryoSat-2[J]. Geophysical Research Letters, 2014, 41(11): 2014GL060111 https://www.researchgate.net/publication/262386607_Increased_ice_losses_from_Antarctica_detected_by_CryoSat-2
    [9]
    Wen J, Jezek K C, Monaghan A J, et al. Accumulation Variability and Mass Budgets of the Lambert Glacier-Aery Ice Shelf System, East Antarctica, at High Elevations[J]. Annals of Glaciology, 2006, 43(1): 351-360 doi: 10.3189/172756406781812249
    [10]
    Liu H, Jezek K C, Li B. Development of an Antarctic Digital Elevation Model by Integrating Cartographic and Remotely Sensed Data: A Geographic Information System Based Approach[J]. Journal of Geophysical Research, 1999, 104(B10): 23 199-23 213 doi: 10.1029/1999JB900224
    [11]
    Brenner A C, Dimarzio J P, Zwally H J. Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 321-331 doi: 10.1109/TGRS.2006.887172
    [12]
    Slobbe D C, Lindenbergh R C, Ditmar P. Estimation of Volume Change Rates of Greenland's Ice Sheet from ICESat Data Using Overlapping Footprints[J]. Remote Sensing of Environment, 2008, 112(12): 4 204-4 213 doi: 10.1016/j.rse.2008.07.004
    [13]
    Abdalati W, Zwally H J, Bindschadler R, et al. The ICESat-2 Laser Altimetry Mission[J]. Proceedings of the IEEE, 2010, 98(5): 735-751 doi: 10.1109/JPROC.2009.2034765
    [14]
    Wingham D J, Francis C R, Baker S, et al. CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields[J]. Advances in Space Research, 2006, 37(4): 841-871 doi: 10.1016/j.asr.2005.07.027
    [15]
    Gray L, Burgess D, Copland L, et al. Interferometric Swath Processing of Cryosat Data for Glacial Ice Topography[J]. The Cryosphere, 2013, 7(6): 1 857-1 867 doi: 10.5194/tc-7-1857-2013
    [16]
    Jung D-T L H-S, Yoon G-W. Development of an Efficient Processor for SIRAL SARIn Mode[J]. Korean Journal of Remote Sensing, 2010, 26(3)335-346 https://www.researchgate.net/publication/263999490_Development_of_an_Efficient_Processor_for_SIRAL_SARIn_Mode
    [17]
    Bouzinac C. CryoSat Product Handbook[R]. London, UK: ESA and Mullard Space Science Laboratory-University College London, 2012
    [18]
    Wingham D J, Phalippou L, Mavrocordatos C, et al. The Mean Echo and Echo Cross Product from a Beamforming Interferometric Altimeter and Their Application to Elevation Measurement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2 305-2 323 doi: 10.1109/TGRS.2004.834352
    [19]
    Scagliola, M. CryoSat Footprints[R]. SAR-CRY2-TEN-6331; European Space Agency, Paris, France, 2013
    [20]
    Kleinherenbrink M, Lindenbergh R C, Ditmar P G. Monitoring of Lake Level Changes on the Tibetan Plateau and Tian Shan by Retracking Cryosat SARIn Waveforms[J]. Journal of Hydrology, 2015, 521: 119-131 doi: 10.1016/j.jhydrol.2014.11.063
    [21]
    任贾文, 效存德, 秦大河, 等. Lambert冰川流域物质平衡和南极冰盖变化[J].中国科学(D辑:地球科学), 2002, 32(2): 134-140 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200210014.htm

    Ren Jiawen, Xiao Cunde, Qin Dahe, et al. Mass Balance of the Lambert Glacier Basin, East Antarctica[J]. Science in China(Serie D). 2002, 32(2): 134-140 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200210014.htm
    [22]
    Liu H, Jezek K C, Li B, et al. RADARSAT Antarctic Mapping Project Digital Elevation Model Version 2[R]. Boulder, Colorado, USA: National Snow and Ice Data Center, 2001
    [23]
    John D. GLAS/ICESat 500 m Laser Altimetry Digital Elevation Model of Antarctica [R]. Boulder, Colorado, USA: National Snow and Ice Data Center, 2007
    [24]
    Wessel P, Smith W H, Scharroo R, et al. Generic Mapping Tools: Improved Version Released[J]. Eos, Transactions American Geophysical Union, 2013, 94(45): 409-410 https://www.researchgate.net/publication/259130456_Generic_Mapping_Tools_Improved_Version_Released
    [25]
    Baek S, Kwoun O-I, Braun, et al. Digital Elevation Model of King Edward Ⅶ Peninsula, West Antarctica, From SAR Interferometry and ICESat Laser Altimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(4): 413-417 doi: 10.1109/LGRS.2005.853623
    [26]
    Rignot E, Echelmeyer K, Krabill W. Penetration Depth of Interferometric Synthetic-aperture Radar Signals in Snow and Ice[J]. Geophysical Research Letters, 2001, 28(18): 3 501-3 504 doi: 10.1029/2000GL012484
    [27]
    Zwally H J, Yi D, Kwok R, et al. ICESat Measurements of Sea Ice Freeboard and Estimates of Sea Ice Thickness in the Weddell Sea[J]. Journal of Geophysical Research: Oceans (1978-2012), 2008, 113(C2) https://www.researchgate.net/publication/233778830_ICESat_measurements_of_sea_ice_freeboard_and_estimates_of_sea_ice_thickness_in_the_Weddell_Sea
    [28]
    Kwok R, Cunningham G F. ICESat over Arctic Sea Ice: Estimation of Snow Depth and Ice Thickness[J]. Journal of Geophysical Research: Oceans (1978-2012), 2008, 113(C8) https://www.researchgate.net/publication/233778828_ICESat_over_Arctic_sea_ice_Estimation_of_snow_depth_and_ice_thickness
    [29]
    Rodríguez E, Morris CS, Belz JE.A Global Assessment of the SRTM Performance[J]. Photogrammetric Engineering & Remote Sensing. 2006, 72(3):249-260 https://www.researchgate.net/publication/255262465_A_global_assessment_of_SRTM_performance
    [30]
    Dong Y, Chang H C, Chen W, et al. Accuracy Assessment of GDEM, SRTM, and DLR-SRTM in Northeastern China[J], Geocarto International, 2015, 30(7):779-792 doi: 10.1080/10106049.2014.985744
    [31]
    Michele S, Marco F. Known Biases in CryoSat Level1b Products[R]. European Space Agency, Paris, France, 2013
  • Related Articles

    [1]MAO Ya, WANG Qianxin, HU Chao, YANG Hongyi, ZHANG Mingbin. Analysis of the Characterization for BDS-3 Satellite Clock Error[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 53-61. DOI: 10.13203/j.whugis20180224
    [2]ZHAO Zhiyuan, YIN Ling, FANG Zhixiang, SHAW Shihlung, YANG Xiping. Impacts of Temporal Sampling Intervals on Stay Detection and Movement Network Construction in Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1152-1158. DOI: 10.13203/j.whugis20160303
    [3]TIAN Yingguo, HAO Jinming, CHEN Mingjian, YU Heli, HENG Peishen. Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591
    [4]HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827
    [5]MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186.
    [6]LI Jiangwei, LIU Jingnan, XIAO Jianhua, WANG Houzhi. Data Processing and Stability Analysis of Continuouly Operating Reference Stations Base-Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 825-829.
    [7]LIN Xiaojing, GUO Fei, LV Cuixian, XU Yun. Impacts of Sampling Rates of IGS Satellite Clock on Convergence of Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 683-686.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing. Impact of Sample Rate of IGS Satellite Clock on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 152-155.
    [9]NIU Fei, HAN Chunhao, ZHANG Yisheng, CHANG Shoufeng. Analysis and Detection on Atomic Clock Anomaly of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 585-588.
    [10]GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221.
  • Cited by

    Periodical cited type(2)

    1. 赖晓铭. 基于InSAR技术的福州市南江滨地区闽江堤岸沉降监测与分析. 测绘与空间地理信息. 2025(02): 184-187 .
    2. 欧书圆,张卫星. 顾及残差插值补偿的区域CORS对流层延迟建模研究. 测绘地理信息. 2024(05): 19-23 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return