Citation: | DONG Yusen, Chang Hsing-Chung, ZHANG Kui, MA Jiao, WANG Shu, SUN Pan. CryoSat-2 SARIn Interferometric Processing for DEM Generation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 803-809. DOI: 10.13203/j.whugis20150568 |
[1] |
Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent Warming in Mountain Regions of the World[J]. Nature Climate Change, 2015, 5: 424-430 doi: 10.1038/nclimate2563
|
[2] |
Zhou Y, Zhou C, Deng F, et al. Improving InSAR Elevation Models in Antarctica Using Laser Altimetry, Accounting for Ice Motion, Orbital Errors and Atmospheric Delays[J]. Remote Sensing of Environment, 2015, 162: 112-118 doi: 10.1016/j.rse.2015.01.017
|
[3] |
董玉森, Ge Linlin, Chang H-C, 等.基于差分雷达干涉测量的矿区地面沉降监测研究[J].武汉大学学报·信息科学版, 2007, 32(10): 888-891 http://ch.whu.edu.cn/CN/abstract/abstract2013.shtml
Dong Yusen, Ge Linlin, Chang H-C, et al. Mine Subsidence Monitoring by Differential InSAR[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 888-891 http://ch.whu.edu.cn/CN/abstract/abstract2013.shtml
|
[4] |
Cook A J, Murray T, Luckman A, et al. A New 100-m Digital Elevation Model of the Antarctic Peninsula Derived from ASTER Global DEM: Methods and Accuracy Assessment[J]. Earth System Science Data, 2012, 4(1): 129-142 doi: 10.5194/essd-4-129-2012
|
[5] |
Dong Y, Chen W, Chang H-C, et al. Assessment of Orthoimage and DEM Derived from ZY-3 Stereo Image in Northeastern China[J]. Survey Review, 2015, 48(349):247-257 https://www.researchgate.net/profile/Weitao_Chen2/publication/275722218_Assessment_of_orthoimage_and_DEM_derived_from_ZY-3_stereo_image_in_Northeastern_China/links/569e17ff08ae00e5c990fb1c.pdf?origin=publication_detail
|
[6] |
Liu J, Tong X, Liu S, et al. Elevation Change of Lambert-Amery System from ICES at/GLAS Data[C]. 2012 Second International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Shanghai, China, 2012
|
[7] |
Helm V, Humbert A, Miller H. Elevation and Elevation Change of Greenland and Antarctica Derived from CryoSat-2[J]. The Cryosphere, 2014, 8(4): 1 539-1 559 doi: 10.5194/tc-8-1539-2014
|
[8] |
Mcmillan M, Shepherd A, Sundal A, et al. Increased Ice Losses from Antarctica Detected by CryoSat-2[J]. Geophysical Research Letters, 2014, 41(11): 2014GL060111 https://www.researchgate.net/publication/262386607_Increased_ice_losses_from_Antarctica_detected_by_CryoSat-2
|
[9] |
Wen J, Jezek K C, Monaghan A J, et al. Accumulation Variability and Mass Budgets of the Lambert Glacier-Aery Ice Shelf System, East Antarctica, at High Elevations[J]. Annals of Glaciology, 2006, 43(1): 351-360 doi: 10.3189/172756406781812249
|
[10] |
Liu H, Jezek K C, Li B. Development of an Antarctic Digital Elevation Model by Integrating Cartographic and Remotely Sensed Data: A Geographic Information System Based Approach[J]. Journal of Geophysical Research, 1999, 104(B10): 23 199-23 213 doi: 10.1029/1999JB900224
|
[11] |
Brenner A C, Dimarzio J P, Zwally H J. Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 321-331 doi: 10.1109/TGRS.2006.887172
|
[12] |
Slobbe D C, Lindenbergh R C, Ditmar P. Estimation of Volume Change Rates of Greenland's Ice Sheet from ICESat Data Using Overlapping Footprints[J]. Remote Sensing of Environment, 2008, 112(12): 4 204-4 213 doi: 10.1016/j.rse.2008.07.004
|
[13] |
Abdalati W, Zwally H J, Bindschadler R, et al. The ICESat-2 Laser Altimetry Mission[J]. Proceedings of the IEEE, 2010, 98(5): 735-751 doi: 10.1109/JPROC.2009.2034765
|
[14] |
Wingham D J, Francis C R, Baker S, et al. CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields[J]. Advances in Space Research, 2006, 37(4): 841-871 doi: 10.1016/j.asr.2005.07.027
|
[15] |
Gray L, Burgess D, Copland L, et al. Interferometric Swath Processing of Cryosat Data for Glacial Ice Topography[J]. The Cryosphere, 2013, 7(6): 1 857-1 867 doi: 10.5194/tc-7-1857-2013
|
[16] |
Jung D-T L H-S, Yoon G-W. Development of an Efficient Processor for SIRAL SARIn Mode[J]. Korean Journal of Remote Sensing, 2010, 26(3)335-346 https://www.researchgate.net/publication/263999490_Development_of_an_Efficient_Processor_for_SIRAL_SARIn_Mode
|
[17] |
Bouzinac C. CryoSat Product Handbook[R]. London, UK: ESA and Mullard Space Science Laboratory-University College London, 2012
|
[18] |
Wingham D J, Phalippou L, Mavrocordatos C, et al. The Mean Echo and Echo Cross Product from a Beamforming Interferometric Altimeter and Their Application to Elevation Measurement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2 305-2 323 doi: 10.1109/TGRS.2004.834352
|
[19] |
Scagliola, M. CryoSat Footprints[R]. SAR-CRY2-TEN-6331; European Space Agency, Paris, France, 2013
|
[20] |
Kleinherenbrink M, Lindenbergh R C, Ditmar P G. Monitoring of Lake Level Changes on the Tibetan Plateau and Tian Shan by Retracking Cryosat SARIn Waveforms[J]. Journal of Hydrology, 2015, 521: 119-131 doi: 10.1016/j.jhydrol.2014.11.063
|
[21] |
任贾文, 效存德, 秦大河, 等. Lambert冰川流域物质平衡和南极冰盖变化[J].中国科学(D辑:地球科学), 2002, 32(2): 134-140 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200210014.htm
Ren Jiawen, Xiao Cunde, Qin Dahe, et al. Mass Balance of the Lambert Glacier Basin, East Antarctica[J]. Science in China(Serie D). 2002, 32(2): 134-140 http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200210014.htm
|
[22] |
Liu H, Jezek K C, Li B, et al. RADARSAT Antarctic Mapping Project Digital Elevation Model Version 2[R]. Boulder, Colorado, USA: National Snow and Ice Data Center, 2001
|
[23] |
John D. GLAS/ICESat 500 m Laser Altimetry Digital Elevation Model of Antarctica [R]. Boulder, Colorado, USA: National Snow and Ice Data Center, 2007
|
[24] |
Wessel P, Smith W H, Scharroo R, et al. Generic Mapping Tools: Improved Version Released[J]. Eos, Transactions American Geophysical Union, 2013, 94(45): 409-410 https://www.researchgate.net/publication/259130456_Generic_Mapping_Tools_Improved_Version_Released
|
[25] |
Baek S, Kwoun O-I, Braun, et al. Digital Elevation Model of King Edward Ⅶ Peninsula, West Antarctica, From SAR Interferometry and ICESat Laser Altimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(4): 413-417 doi: 10.1109/LGRS.2005.853623
|
[26] |
Rignot E, Echelmeyer K, Krabill W. Penetration Depth of Interferometric Synthetic-aperture Radar Signals in Snow and Ice[J]. Geophysical Research Letters, 2001, 28(18): 3 501-3 504 doi: 10.1029/2000GL012484
|
[27] |
Zwally H J, Yi D, Kwok R, et al. ICESat Measurements of Sea Ice Freeboard and Estimates of Sea Ice Thickness in the Weddell Sea[J]. Journal of Geophysical Research: Oceans (1978-2012), 2008, 113(C2) https://www.researchgate.net/publication/233778830_ICESat_measurements_of_sea_ice_freeboard_and_estimates_of_sea_ice_thickness_in_the_Weddell_Sea
|
[28] |
Kwok R, Cunningham G F. ICESat over Arctic Sea Ice: Estimation of Snow Depth and Ice Thickness[J]. Journal of Geophysical Research: Oceans (1978-2012), 2008, 113(C8) https://www.researchgate.net/publication/233778828_ICESat_over_Arctic_sea_ice_Estimation_of_snow_depth_and_ice_thickness
|
[29] |
Rodríguez E, Morris CS, Belz JE.A Global Assessment of the SRTM Performance[J]. Photogrammetric Engineering & Remote Sensing. 2006, 72(3):249-260 https://www.researchgate.net/publication/255262465_A_global_assessment_of_SRTM_performance
|
[30] |
Dong Y, Chang H C, Chen W, et al. Accuracy Assessment of GDEM, SRTM, and DLR-SRTM in Northeastern China[J], Geocarto International, 2015, 30(7):779-792 doi: 10.1080/10106049.2014.985744
|
[31] |
Michele S, Marco F. Known Biases in CryoSat Level1b Products[R]. European Space Agency, Paris, France, 2013
|
[1] | MAO Ya, WANG Qianxin, HU Chao, YANG Hongyi, ZHANG Mingbin. Analysis of the Characterization for BDS-3 Satellite Clock Error[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 53-61. DOI: 10.13203/j.whugis20180224 |
[2] | ZHAO Zhiyuan, YIN Ling, FANG Zhixiang, SHAW Shihlung, YANG Xiping. Impacts of Temporal Sampling Intervals on Stay Detection and Movement Network Construction in Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1152-1158. DOI: 10.13203/j.whugis20160303 |
[3] | TIAN Yingguo, HAO Jinming, CHEN Mingjian, YU Heli, HENG Peishen. Impact of Sample Rate of GPS Satellite Clock and Observation Data on LEO GPS-Based Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1792-1796. DOI: 10.13203/j.whugis20150591 |
[4] | HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827 |
[5] | MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186. |
[6] | LI Jiangwei, LIU Jingnan, XIAO Jianhua, WANG Houzhi. Data Processing and Stability Analysis of Continuouly Operating Reference Stations Base-Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 825-829. |
[7] | LIN Xiaojing, GUO Fei, LV Cuixian, XU Yun. Impacts of Sampling Rates of IGS Satellite Clock on Convergence of Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 683-686. |
[8] | ZHANG Xiaohong, GUO Fei, LI Xingxing. Impact of Sample Rate of IGS Satellite Clock on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 152-155. |
[9] | NIU Fei, HAN Chunhao, ZHANG Yisheng, CHANG Shoufeng. Analysis and Detection on Atomic Clock Anomaly of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 585-588. |
[10] | GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221. |
1. |
赖晓铭. 基于InSAR技术的福州市南江滨地区闽江堤岸沉降监测与分析. 测绘与空间地理信息. 2025(02): 184-187 .
![]() | |
2. |
欧书圆,张卫星. 顾及残差插值补偿的区域CORS对流层延迟建模研究. 测绘地理信息. 2024(05): 19-23 .
![]() |