Wang Jianhua, Zhu Guorni, Wu Hehai. The Design and Organization for the NF2 Multimedia Data Model Based on the Extension of Non First Normal Form[J]. Geomatics and Information Science of Wuhan University, 1998, 23(2): 163-167.
Citation: Wang Jianhua, Zhu Guorni, Wu Hehai. The Design and Organization for the NF2 Multimedia Data Model Based on the Extension of Non First Normal Form[J]. Geomatics and Information Science of Wuhan University, 1998, 23(2): 163-167.

The Design and Organization for the NF2 Multimedia Data Model Based on the Extension of Non First Normal Form

More Information
  • Received Date: May 26, 1997
  • Published Date: February 04, 1998
  • In this paper, the characteristics of the multimedia data model has been analyzed.One model for the organization and storing multimedia data, namely the multimedia data model based on the non first normal form (NF2) has been proposed based on the theory of relation database and extension for the non first normal form. With the help of this model, the multimedia data such as image, sound, video and so forth and embedding structure of multimedia data can be effectively stored and managed.
  • Related Articles

    [1]XU Qiang, CUI Shenghua, HUANG Wei, PEI Xiangjun, FAN Xuanmei, AI Ying, ZHAO Weihua, LUO Yonghong, LUO Jing, LIU Ming, XIA Min, WANG Fei, PENG Dalei, ZHENG Guang, CHEN Wanlin. Construction of a Landslide Knowledge Graph in the Field of Engineering Geology[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1601-1615. DOI: 10.13203/j.whugis20230245
    [2]LI Hao, GUO Li, WANG Yunge, JIANG Jingli. Grid Pattern Recognition in Road Networks Using Link Graph[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 126-132. DOI: 10.13203/j.whugis20190300
    [3]DU Zhiqiang, LI Yu, ZHANG Yeting, TAN Yuqi, ZHAO Wenhao. Knowledge Graph Construction Method on Natural Disaster Emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1344-1355. DOI: 10.13203/j.whugis20200047
    [4]YUAN Xiuxiao, YUAN Wei, CHEN Shiyu. An Automatic Detection Method of Mismatching Points in Remote Sensing Images Based on Graph Theory[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1854-1860. DOI: 10.13203/j.whugis20180154
    [5]SHI Yan, LIU Qiliang, DENG Min, LIN Xuemei. A Hybrid Spatial Clustering Method Based on Graph Theory and Spatial Density[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1276-1280.
    [6]TIAN Jing, SONG Zihan, AI Tinghua. Grid Pattern Extraction in Road Networks with Graph[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 724-727.
    [7]WAN Youchuan, HUANG Jun. Influence of Geometric and Graph Theoretical Measures on Land Classification Using High-Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 794-798.
    [8]LUO Jing, CUI Weihong, NIU Zhenguo. Application of Spatio-temporal Reasoning Model Based on Hyper-graph Theory[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 90-93.
    [9]ZHANG Yuanyu, LI Lin, JIN Yuping, ZHU Haihong. Structured Design of Dendritic River Networks Based on Graph[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 537-539,543.
    [10]Feng Yan, Zhang Zhenglu, Luo Nianxue. Algorithms to Produce Least Independent Close Loops and Connecting Traverses Automatically[J]. Geomatics and Information Science of Wuhan University, 1998, 23(3): 255-259.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return