LI Hao, GUO Li, WANG Yunge, JIANG Jingli. Grid Pattern Recognition in Road Networks Using Link Graph[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 126-132. DOI: 10.13203/j.whugis20190300
Citation: LI Hao, GUO Li, WANG Yunge, JIANG Jingli. Grid Pattern Recognition in Road Networks Using Link Graph[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 126-132. DOI: 10.13203/j.whugis20190300

Grid Pattern Recognition in Road Networks Using Link Graph

Funds: 

The National Natural Science Foundation of China 41471314

More Information
  • Author Bio:

    LI Hao, master, specializes in the road networks pattern recognition and road matching. E-mail: 1017920864@qq.com

  • Corresponding author:

    GUO Li, PhD, associate professor. E-mail: gl_750312@163.com

  • Received Date: October 11, 2019
  • Published Date: January 04, 2022
  •   Objectives  The road network is the skeleton of a city and the road pattern refers to the shape of roads that can be clearly named. Identifying road patterns helps to understand the structures of cities and find more potential knowledge. However, urban road networks are complicated, and it is very difficult to identify the road structure.
      Methods  A link-graph-based method is proposed for recognizing the grid pattern in road networks. This method uses the link graph to represent road networks, in which nodes represent road segments and links represent intersections. It converts recognizing the grid pattern in road networks into searching for loops in the link graph. Five parameters are defined to select nodes and links that would match the grid conditions in the graph. The breadth-first search algorithm is used to search the loop in the link graph.
      Results  By mapping links and nodes in the link graph back to road segments, we can identify the grid pattern in road networks. This method can still work in more complicated road networks.
      Conclusions  The result shows that the proposed method can effectively recognize the grid pattern in road networks. Other road patterns can be further identified through analysis of the characteristics of the road connection.
  • [1]
    Heinzle F, Anders K H, Sester M. Automatic Detection of Patterns in Road Networks-Methods and Evaluation[C]//Joint Workshop Visualization and Exploration of Geospatial Data, Stuttgart, Germany, 2007
    [2]
    Heinzle F, Anders K H, Sester M. Pattern Recognition in Road Networks on the Example of Circular Road Detection[M]//Raubal M, Miller H, Frank A. Geographic Information Science, Berlin, Germany: Springer-Verlag, 2006
    [3]
    Wang X S, You S K, Wang L. Classifying Road Network Patterns Using Multinomial Logit Model[J]. Journal of Transport Geography, 2017, 58: 104‍‐112 doi: 10.1016/j.jtrangeo.2016.11.013
    [4]
    Yang B S, Luan X C, Li Q Q. Generating Hierarchical Strokes from Urban Street Networks Based on Spatial Pattern Recognition[J]. International Journal of Geographical Information Science, 2011, 25(12): 2025-2050 doi: 10.1080/13658816.2011.570270
    [5]
    Zhang Q. Modeling Structure and Patterns in Road Network Generalization[C]//Workshop on Generalisation and Multiple Representation, Leicester, UK, 2004
    [6]
    田晶, 宋子寒, 艾廷华. 运用图论进行道路网网格模式提取[J]. 武汉大学学报·信息科学版, 2012, 37(6): 724-727 http://ch.whu.edu.cn/article/id/234

    Tian Jing, Song Zihan, Ai Tinghua. Grid Pattern Extraction in Road Networks with Graph[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 724-727 http://ch.whu.edu.cn/article/id/234
    [7]
    何亚坤, 艾廷华, 杜欣, 等. 网络空间向量剖分法识别城市路网网格模式[J]. 武汉大学学报·信息科学版, 2018, 43(1): 138-144 doi: 10.13203/j.whugis20150757

    He Yakun, Ai Tinghua, Du Xin, et al. Grid Pattern Recognition in Street Network Space by Vector Tessellation Method[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 138-144 doi: 10.13203/j.whugis20150757
    [8]
    Louf R, Barthelemy M. A Typology of Street Patterns[J]. Journal of the Royal Society Interface, 2014, 11(101): 924-933
    [9]
    巩现勇, 武芳, 焦洋洋, 等. 基于关联规则分类的道路网网格模式识别[J]. 测绘科学技术学报, 2013, 30(6): 633-637 doi: 10.3969/j.issn.1673-6338.2013.06.020

    Gong Xianyong, Wu Fang, Jiao Yangyang, et al. The Association Rule Based Classification Approach to Grid Pattern Recognition in Road Networks[J]. Journal of Geomatics Science and Technology, 2013, 30(6): 633-637 doi: 10.3969/j.issn.1673-6338.2013.06.020
    [10]
    杨必胜, 张云菲, 栾学晨. 保持几何模式的城市道路格网简化方法[J]. 中国图象图形学报, 2012, 17(1): 150-156 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201201022.htm

    Yang Bisheng, Zhang Yunfei, Luan Xuechen. Pattern Preserving Method for Grid Simplification in Road Networks[J]. Journal of Image and Graphics, 2012, 17(1): 150-156 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201201022.htm
    [11]
    Heinzle F, Anders K H, Sester M. Graph Based Approaches for Recognition of Patterns and Implicit Information in Road Networks[C]// The 22nd International Cartographic Conference, A Coruna, Spain, 2005
    [12]
    Yang B S, Luan X C, Li Q Q. An Adaptive Method for Identifying the Spatial Patterns in Road Networks[J]. Computers, Environment and Urban Systems, 2010, 34(1): 40-48 doi: 10.1016/j.compenvurbsys.2009.10.002
    [13]
    田晶, 艾廷华, 丁绍军. 基于C4.5算法的道路网网格模式识别[J]. 测绘学报, 2012, 41(1): 121-126 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201201024.htm

    Tian Jing, Ai Tinghua, Ding Shaojun. Grid Pattern Recognition in Road Networks Based on C4.5 Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1): 121-126 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201201024.htm
    [14]
    田晶, 何遒, 周梦杰. 运用主成分分析识别道路网中的网格模式[J]. 武汉大学学报·信息科学版, 2013, 38(5): 604-607 http://ch.whu.edu.cn/article/id/2638

    Tian Jing, He Qiu, Zhou Mengjie. Gird Pattern Recognition in Road Network Using Principal Component Analysis[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 604-607 http://ch.whu.edu.cn/article/id/2638
    [15]
    田晶, 张泊宇, 杨雯雨. 对自组织映射聚类实现道路网网格模式识别[J]. 武汉大学学报·信息科学版, 2013, 38(11): 1330-1334 http://ch.whu.edu.cn/article/id/2804

    Tian Jing, Zhang Boyu, Yang Wenyu. Gird Pattern Recognition Based on Clustering of Self-Organizing Maps[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11): 1330-1334 http://ch.whu.edu.cn/article/id/2804
    [16]
    田晶, 艾廷华, 雷华清. 运用自组织映射识别街道网中的网格模式[J]. 武汉大学学报·信息科学版, 2012, 37(3): 362-365 http://ch.whu.edu.cn/article/id/158

    Tian Jing, Ai Tinghua, Lei Huaqing. Recognition of Grid Pattern in Street Network Using Self-Organizing Maps[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 362-365 http://ch.whu.edu.cn/article/id/158
    [17]
    Jiang B, Liu C. Street-Based Topological Representations and Analyses for Predicting Traffic Flow in GIS[J]. International Journal of Geographical Information Science, 2009, 23(9): 1119-1137 doi: 10.1080/13658810701690448
    [18]
    Porta S, Crucitti P, Latora V. The Network Analysis of Urban Streets: A Dual Approach[J]. Physica A: Statistical Mechanics and Its Applications, 2006, 369(2): 853-866 doi: 10.1016/j.physa.2005.12.063
    [19]
    沈敬伟, 刘德儿, 周廷刚, 等. 基于对偶图的道路网络空间邻近关系分析初探[J]. 地理与地理信息科学, 2017, 33(3): 1-4 doi: 10.3969/j.issn.1672-0504.2017.03.001

    Shen Jingwei, Liu De'er, Zhou Tinggang, et al. A Preliminary Study on Spatial Neighbor Relation Analysis Based on Dual Graph for Road Network[J]. Geography and Geo-Information Science, 2017, 33(3): 1-4 doi: 10.3969/j.issn.1672-0504.2017.03.001
    [20]
    Jiang B, Claramunt C. A Structural Approach to the Model Generalization of an Urban Street Network[J]. GeoInformatica, 2004, 8(2): 157-171 doi: 10.1023/B:GEIN.0000017746.44824.70
    [21]
    翟仁健, 武芳, 黄博华, 等. 城市道路网面域层次结构特征的识别与表达[J]. 测绘科学技术学报, 2014, 31(4): 413-418 doi: 10.3969/j.issn.1673-6338.2014.04.018

    Zhai Renjian, Wu Fang, Huang Bohua, et al. A Method for Recognition and Representation of Areal Hierarchy of Urban Road Networks[J]. Journal of Geomatics Science and Technology, 2014, 31(4): 413-418 doi: 10.3969/j.issn.1673-6338.2014.04.018
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views (1006) PDF downloads (89) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return