YUAN Xiuxiao, YUAN Wei, CHEN Shiyu. An Automatic Detection Method of Mismatching Points in Remote Sensing Images Based on Graph Theory[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1854-1860. DOI: 10.13203/j.whugis20180154
Citation: YUAN Xiuxiao, YUAN Wei, CHEN Shiyu. An Automatic Detection Method of Mismatching Points in Remote Sensing Images Based on Graph Theory[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1854-1860. DOI: 10.13203/j.whugis20180154

An Automatic Detection Method of Mismatching Points in Remote Sensing Images Based on Graph Theory

Funds: 

The National Natural Science Foundation of China 41771479

the National High Resolution Earth Observation System (the Civil Part) 50-H31D01-0508-13/15

the Major State Basic Research Development Program(973 Program) of China 2012CB719902

More Information
  • Author Bio:

    YUAN Xiuxiao, PhD, professor. He is concentrated on the research and education in remote sensing (RS), global navigation satellite system (GNSS) and their integration. He has made unique and original contribution to the areas of theories and methods for high precision photogrammetric positioning, GNSS/IMU-supported aerotriangulation, geometric processing of high-resolution satellite imagery, and so on. He published 12 monographs and more than 130 papers. E-mail:yuanxx@whu.edu.cn

  • Corresponding author:

    YUAN Wei, PhD candidate. E-mail: milaoyw@whu.edu.cn

  • Received Date: May 07, 2018
  • Published Date: December 04, 2018
  • A graph theory-based mismatching detection method is proposed in this paper. At first, two complete graphs are constructed by the correspondences in left and right images, respectively. Then an induced graph is constructed by using the sum of similarity of the triangles corresponding to each node in complete graphs as the attribute value. Finally, the induced graph is refined by removing the node of which the attribute value is the smallest in the graph. In order to automatically locate multiple mismatching points, the graph theory-based mismatching elimination method is a recursive process. The whole process scheme is as follows, complete graph building, induced graph building, and mismatching point locating. The experimental results demonstrates that the accurate mapping model between matched points is not necessary in our mismatching detection method, while the local simila-rity of triangles is sufficient for locating the mismatching points. In addition, the true positive rate is higher and the false positive rate is lower compared to classical RANSAC (random sample consensus) bundler detection method.
  • [1]
    李德仁, 袁修孝.误差处理与可靠性理论[M].武汉:武汉大学出版社, 2012

    Li Deren, Yuan Xiuxiao. Error Processing and Relia-bility Theory[M]. Wuhan:Wuhan University Press, 2012
    [2]
    Baarda W. A Testing Procedure for Use in Geodetic Networks[OL]. http://www.ncgeo.nl/downloads/09Baarda.pdf, 1968
    [3]
    Wilcox R R. Introduction to Robust Estimation and Hypothesis Testing[M]. Pittsburgh:Academic Press, 2011
    [4]
    李德仁.利用选择权迭代法进行粗差定位[J].武汉测绘学院学报, 1984, 9(1):46-68 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003186032

    Li Deren. Gross Error Location by Means of the Iteration Method with Variable Weights[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1984, 9(1):46-68 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003186032
    [5]
    Kubik K. An Error Theory for the Danish Method[C]. The Symposium of ISP Commission Ⅲ, Helsinki, Finland, 1982
    [6]
    Huber P J. Robust Statistics[M]//Marques T A, Buckland S T, Borchers D L, et al. International Encyclopedia of Statistical Science. Berlin, Heidelberg: Springer, 2011
    [7]
    Fischler M A, Bolles R C. Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Communications of the ACM, 1981, 24(6):381-395 doi: 10.1145/358669.358692
    [8]
    İmre E, Adrian H. Order Statistics of RANSAC and Their Practical Application[J]. International Journal of Computer Vision, 2015, 111(3):276-297 doi: 10.1007/s11263-014-0745-1
    [9]
    Chum O, Jiri M. Matching with PROSAC-Progressive Sample Consensus[C]. The IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CA, USA, 2005
    [10]
    张正鹏, 江万寿, 张靖.车载立方体全景影像匹配点的粗差检测方法[J].武汉大学学报·信息科学版, 2014, 39(10):1208-1213 http://ch.whu.edu.cn/CN/abstract/abstract3097.shtml

    Zhang Zhengpeng, Jiang Wanshou, Zhang Jing. A Gross Error Detection Method of Vehicle-Borne Cubic Panoramic Image Sequence[J]. Geomatics and Information Science of Wuhan University, 2014, 39(10):1208-1213 http://ch.whu.edu.cn/CN/abstract/abstract3097.shtml
    [11]
    张永军, 王博, 黄旭, 等.影像匹配粗差的局部矢量面元剔除方法[J].测绘学报, 2014, 43(7):717-723 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201407010.htm

    Zhang Yongjun, Wang Bo, Huang Xu, et al.Local Vector Surface Elimination Method for Gross Error of Image Matching[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7):717-723 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201407010.htm
    [12]
    张永军, 王博, 段延松.一种针对大倾角影像匹配粗差剔除的算法[J].武汉大学学报·信息科学版, 2013, 38(37):1135-1138 http://ch.whu.edu.cn/CN/abstract/abstract2787.shtml

    Zhang Yongjun, Wang Bo, Duan Yansong.An Algorithm of Gross Error Elimination for Large Dip Image Matching[J]. Geomatics and Information Science of Wuhan University, 2013, 38(37):1135-1138 http://ch.whu.edu.cn/CN/abstract/abstract2787.shtml
    [13]
    徐秋辉, 佘江峰, 宋晓群, 等.利用Harris-Laplace和SIFT描述子进行低空遥感影像匹配[J].武汉大学学报·信息科学版, 2012, 37(12):1443-1447 http://ch.whu.edu.cn/CN/abstract/abstract413.shtml

    Xu Qiuhui, She Jiangfeng, Song Xiaoqun, et al. Matching Low Altitude Remote Sensing Image with Harris-Laplace and SIFT Descriptor[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12):1443-1447 http://ch.whu.edu.cn/CN/abstract/abstract413.shtml
    [14]
    徐秋辉, 佘江峰, 宋晓群, 等.利用改进的DCCD和SIFT描述符的影像匹配方法[J].武汉大学学报·信息科学版, 2015, 40(12):1613-1617, 1645 http://ch.whu.edu.cn/CN/abstract/abstract3389.shtml

    Xu Qiuhui, She Jiangfeng, Song Xiaoqun, et al. An Image Matching Method Based on Improved DCCD and SIFT Descriptor[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12):1613-1617, 1645 http://ch.whu.edu.cn/CN/abstract/abstract3389.shtml
    [15]
    王之卓.摄影测量原理[M].武汉:武汉大学出版社, 2007

    Wang Zhizhuo. The Principle of Photogrammetry[M]. Wuhan:Wuhan University Press, 2007
    [16]
    Saleem S, Sablatnig R. A Robust SIFT Descriptor for Multispectral Images[J]. IEEE Signal Processing Letters, 2014, 21(4):400-403 doi: 10.1109/LSP.2014.2304073
    [17]
    袁修孝, 李然.带匹配支持度的多源遥感影像SIFT匹配方法[J].武汉大学学报·信息科学版, 2012, 37(12):1438-1442 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201212014

    Yuan Xiuxiao, Li Ran. A SIFT Image Matching Method with Match-Support Measure for Multi-source Remotely Sensed Images[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12):1438-1442 http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201212014
    [18]
    West D B. Introduction to Graph Theory[M]. New Jersey: Prentice Hall, 2001
    [19]
    Duchenne O, Bach F, Kweon I S, et al. A Tensor-Based Algorithm for High-Order Graph Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2383-2395 doi: 10.1109/TPAMI.2011.110
    [20]
    Chen S Y, Yuan X X, Yuan W, et al. Poor Textu-ral Image Matching Based on Graph Theory[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 41(B3):741-747
    [21]
    Yuan X X, Chen S Y, Yuan W, et al. Poor Textu-ral Image Tie Point Matching via Graph Theory[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129(7):21-31
    [22]
    Ye Y, Shan J. A Local Descriptor Based Registration Method for Multispectral Remote Sensing Images with Non-linear Intensity Differences[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 90:83-95 doi: 10.1016/j.isprsjprs.2014.01.009
    [23]
    Zhu Q, Wu B, Xu Z X. Seed Point Selection Me-thod for Triangle Constrained Image Matching Propagation[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(2):207-211 doi: 10.1109/LGRS.2005.861735
  • Related Articles

    [1]MA Yueyuan, ZENG Anmin, XU Yangyin. Symmetric Difference Positioning Model and Analysis of Sailing Circle Mode of Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1155-1165. DOI: 10.13203/j.whugis20210087
    [2]SUN Wenzhou, ZENG Anmin, ZHAO Xiang. Iterative Algorithm of Seafloor Control Points Positioning Taking Reference Depth Error into Account[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 324-330. DOI: 10.13203/j.whugis20210337
    [3]ZHANG Zuxun, DUAN Yansong, TAO Pengjie. From Ground Control Point to Digital Control Photo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1715-1723. DOI: 10.13203/j.whugis20230373
    [4]WANG Mi, WEI Yu, YANG Bo, ZHOU Xiao. Extraction and Analysis of Global Elevation Control Points from ICESat-2 /ATLAS Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184-192. DOI: 10.13203/j.whugis20200531
    [5]SUN Wenzhou, YIN Xiaodong, ZENG Anmin, LIU Qiang. Calculating the Starting Incidence Angle by Iterative Method for Positioning Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1588-1593. DOI: 10.13203/j.whugis20180465
    [6]CHEN Xiaowei, GUO Haitao, ZHANG Baoming, CEN Minyi, LU Jun. Geopositioning Without Ground Control Points for Satellite Image of Island and Reef[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 933-940. DOI: 10.13203/j.whugis20170264
    [7]WANG Mi, YANG Bo, LI Deren, GONG Jianya, PI Yingdong. Technologies and Applications of Block Adjustment Without Control for ZY-3 Images Covering China[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 427-433. DOI: 10.13203/j.whugis20160534
    [8]LIU Jiayin, YOU Hongjian, HONG Wen. Modified Orbit Algorithm with Sparse Ground Control Points for Geo\|rectification of Space\|borne SAR Image[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 262-265.
    [9]QIAN Jun, SHU Ning. Correction of Control Point Slope Based on EM Algorithm and Shading of Single SAR Image[J]. Geomatics and Information Science of Wuhan University, 2004, 29(12): 1089-1092.
    [10]YUAN Xiuxiao, ZHU Wu, WU Junli, WANG Ruiyao. GPS-supported Bundle Block Adjustment Without Ground Control Points[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 852-857.
  • Cited by

    Periodical cited type(13)

    1. 王舒曼,应申,蒋跃文,张闯,李霖,刘经南. 智能驾驶场景中高精地图动静态数据关联方法. 武汉大学学报(信息科学版). 2024(04): 640-650 .
    2. 张焱杰,黄炜,刘信陶,张丰源,吴杭彬,应申,刘春. 自动驾驶高精地图信息交互方法. 武汉大学学报(信息科学版). 2024(04): 662-671+680 .
    3. 尹章才,齐如煜,应申. 自动驾驶高精地图的信息传输模型. 武汉大学学报(信息科学版). 2024(04): 527-536 .
    4. 方志祥,王禄斌. 面向行人导航意图探测的脑电分类研究. 测绘学报. 2024(09): 1829-1841 .
    5. 路宏广,赵树恩. 基于鲁棒模型预测的智能汽车轨迹跟踪控制研究. 系统仿真学报. 2022(01): 153-162 .
    6. 钱玉宝,余米森,郭旭涛,黄华宝,李世震. 无人驾驶车辆智能控制技术发展. 科学技术与工程. 2022(10): 3846-3858 .
    7. 章军辉,陈大鹏,李庆. 自动驾驶技术研究现状及发展趋势. 科学技术与工程. 2020(09): 3394-3403 .
    8. 朱琳琳,张梦炎,张晓丹,俞侃. 自动驾驶汽车的线控转向控制系统. 信息技术. 2020(08): 45-49+54 .
    9. 屈紫君,夏怀成,尚东星,柴晓东,杨树军. 电子稳定控制系统的线控制动控制策略研究. 燕山大学学报. 2020(05): 436-441+449 .
    10. 查云飞,于淼,马芳武,郑寻. 汽车线控转向系统变角传动比控制研究进展综述. 汽车文摘. 2020(12): 1-6 .
    11. 周立,张阳,张一,付丹丹,陈晨,冷超莹,魏征,王英男. 无人时代的海洋测绘技术展望. 海洋技术学报. 2019(01): 85-91 .
    12. 赵望宇,李必军,单云霄,徐豪达. 融合毫米波雷达与单目视觉的前车检测与跟踪. 武汉大学学报(信息科学版). 2019(12): 1832-1840 .
    13. 杨艳明,高增桂,张子龙,沈悦,王林军. 无人驾驶技术发展对策研究. 中国工程科学. 2018(06): 101-104 .

    Other cited types(29)

Catalog

    Article views (1562) PDF downloads (296) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return