WAN Youchuan, HUANG Jun. Influence of Geometric and Graph Theoretical Measures on Land Classification Using High-Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 794-798.
Citation: WAN Youchuan, HUANG Jun. Influence of Geometric and Graph Theoretical Measures on Land Classification Using High-Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 794-798.

Influence of Geometric and Graph Theoretical Measures on Land Classification Using High-Resolution Remote Sensing Images

Funds: 国家科技支撑计划资助项目(2006BAJ09B01);国家教育部博士点专项基金资助项目(20060486041)
More Information
  • Received Date: May 05, 2009
  • Revised Date: May 05, 2009
  • Published Date: July 04, 2009
  • We focus on geometric structure and neighborhood information in high spatial resolution images,combining with local situation and spatial distribution of land use,to accomplish land use classification using geometric and graph theoretical measures based on a SVM,and discuss how these measurements affect the classification results.The experiments use QuickBird images.The result shows that this method can classify the sampled images into four typical classes as rural,agricultural,industrial and commercial-residential regions.The final results can also be used for land use change detection and monitoring.
  • Related Articles

    [1]LIU Jingbin, MAO Jingfeng, LÜ Haixia, GU Fuqiang, LI Hang. Reliability Analysis and Gross Error Detection of BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 214-223. DOI: 10.13203/j.whugis20210522
    [2]YI Zhonghai, CHEN Yuanjun. An Improved GPS Fast Ambiguity Resolution Algorithm with Epoch-Differenced Coordinate Information[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 489-494. DOI: 10.13203/j.whugis20170157
    [3]MA Jun, JIANG Weiping, DENG Liansheng, ZHOU Boye. Estimation Method and Correlation Analysis for Noise in GPS Coordinate Time Series[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1451-1457. DOI: 10.13203/j.whugis20160543
    [4]CHEN Junping, ZHOU Jianhua, YAN Yu, CHEN Qian, WANG Bin. Correlation of Spatial and Temporal Parameters in GNSS Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1649-1657. DOI: 10.13203/j.whugis20170278
    [5]XU Changhui, GAO Jingxiang, ZHOU Feng, WANG Jian. Reliability Analysis of Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 709-713.
    [6]GAN Yu, SUI Lifen. Real-time Detection and Processing of Noise Correlation in Kinematic Navigation and Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 909-913.
    [7]LIN Xueyuan, MENG Xiangwei, HE You. Filter Method and Its Consistency of Double-Star Position/SINS Integrated System[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4): 301-303.
    [8]TAO Benzao, YAO Yibin, SHI Chuang. Distinguishability of Outlier Based on Correlative Analysis[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 881-884.
    [9]YU Xiaohong, LIU Dajie. Coorelation Analysis of Coordinate Conversion for Digitized Data[J]. Geomatics and Information Science of Wuhan University, 2002, 27(5): 456-461.
    [10]HUANG Jiana, LAN Yueming, QIN Wenzhong. Coordinate Conversion of Map Digitization,Precision and Correlation for Digitized Data[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3): 213-216.

Catalog

    Article views (897) PDF downloads (497) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return