XIANG Wei, GUO Jiming, FU Lu. Hyperbolic Settlement Model Based on Least squares Orthogonal Distances Fitting[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 571-574.
Citation: XIANG Wei, GUO Jiming, FU Lu. Hyperbolic Settlement Model Based on Least squares Orthogonal Distances Fitting[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 571-574.

Hyperbolic Settlement Model Based on Least squares Orthogonal Distances Fitting

Funds: 武汉大学精密工程与工业测量国家测绘地理信息局重点实验室开放研究基金资助项目(PF2011 19);广西空间信息与测绘重点实验室开放研究基金资助项目(桂科能1103108 12)
More Information
  • Received Date: March 09, 2013
  • Revised Date: March 09, 2013
  • Published Date: May 04, 2013
  • By adopting a temporary coordinate system and adding one angular constraint and two translation constraints on the base of hyperbolic’s least squares orthogonal distances fitting algorithm, a hyperbolic settlement model based on least squares orthogonal distances fitting was put forward in this paper, in order to fit the settlement data to a hyperbolic using geometric fitting algorithm rather than algebraic fitting algorithm. The results of an example show that the advanced algorithm has a better accuracy by comparison of the traditional fitting algorithm.
  • Related Articles

    [1]XU Qiang, CUI Shenghua, HUANG Wei, PEI Xiangjun, FAN Xuanmei, AI Ying, ZHAO Weihua, LUO Yonghong, LUO Jing, LIU Ming, XIA Min, WANG Fei, PENG Dalei, ZHENG Guang, CHEN Wanlin. Construction of a Landslide Knowledge Graph in the Field of Engineering Geology[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1601-1615. DOI: 10.13203/j.whugis20230245
    [2]LI Hao, GUO Li, WANG Yunge, JIANG Jingli. Grid Pattern Recognition in Road Networks Using Link Graph[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 126-132. DOI: 10.13203/j.whugis20190300
    [3]DU Zhiqiang, LI Yu, ZHANG Yeting, TAN Yuqi, ZHAO Wenhao. Knowledge Graph Construction Method on Natural Disaster Emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1344-1355. DOI: 10.13203/j.whugis20200047
    [4]YUAN Xiuxiao, YUAN Wei, CHEN Shiyu. An Automatic Detection Method of Mismatching Points in Remote Sensing Images Based on Graph Theory[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1854-1860. DOI: 10.13203/j.whugis20180154
    [5]SHI Yan, LIU Qiliang, DENG Min, LIN Xuemei. A Hybrid Spatial Clustering Method Based on Graph Theory and Spatial Density[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1276-1280.
    [6]TIAN Jing, SONG Zihan, AI Tinghua. Grid Pattern Extraction in Road Networks with Graph[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 724-727.
    [7]WAN Youchuan, HUANG Jun. Influence of Geometric and Graph Theoretical Measures on Land Classification Using High-Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 794-798.
    [8]LUO Jing, CUI Weihong, NIU Zhenguo. Application of Spatio-temporal Reasoning Model Based on Hyper-graph Theory[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 90-93.
    [9]ZHANG Yuanyu, LI Lin, JIN Yuping, ZHU Haihong. Structured Design of Dendritic River Networks Based on Graph[J]. Geomatics and Information Science of Wuhan University, 2004, 29(6): 537-539,543.
    [10]Feng Yan, Zhang Zhenglu, Luo Nianxue. Algorithms to Produce Least Independent Close Loops and Connecting Traverses Automatically[J]. Geomatics and Information Science of Wuhan University, 1998, 23(3): 255-259.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return