YAO Yibin, HUANG Chengmeng, LI Chengchun, KONG Jian. A New Algorithm for Solution of Transformation Parameters of Big Rotation Angle's 3D Coordinate[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 253-256.
Citation: YAO Yibin, HUANG Chengmeng, LI Chengchun, KONG Jian. A New Algorithm for Solution of Transformation Parameters of Big Rotation Angle's 3D Coordinate[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 253-256.

A New Algorithm for Solution of Transformation Parameters of Big Rotation Angle's 3D Coordinate

Funds: 国家自然科学基金资助项目(40774008,40721001);;中央高校基本科研业务费专项资金资助项目
More Information
  • Received Date: December 27, 2011
  • Published Date: March 04, 2012
  • The Bursa-Wolf model,molodensky model etc.are widely used in geodesy,photogrammetry and other subjects to solve the transformation parameters between three-dimension coordinates.These models are limited to the coordinate transformation of small rotation angle.But,in practice,a great many coordinate transformation of big rotation angle are needed to be determined.Traditional 3D coordinate transformation model is improved that can solve any rotation angle's 3D coordinate transformation.The examples indicate that the proposed algorithm is feasible and can determine the transformation parameters quickly.
  • Related Articles

    [1]ZHONG Jianlong, HUA Xianghong, CHEN Huaan. Stochastic Process Model of the Uncertainty in the TIN DEM Linear Interpolation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2): 193-196.
    [2]ZHANG Guoqin, ZHU Changqing, LI Guozhong. Measurement Indexes of Positional Uncertainty for Plane Line Segment Based on ε_m Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 431-435.
    [3]ZHU Kunpeng, WU Fang. Error Propagation Model of Linear Features’ Simplification Algorithms[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 932-935.
    [4]TANG Zhong'an, SHI Wenzhong. Equivalent Probability Density Error Model to 2D Generic Curve in Vector GIS[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 85-89.
    [5]ZHU Changqing, ZHANG Guoqin WANG Guangxia, . An Error Entropy Model for GIS Spatial Linear[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 405-407.
    [6]TANG Zhong'an, WANG Xinzhou, JI Xianhua. Modeling Theory to Error Model of Linear Segment in Vector GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(11): 968-972.
    [7]LI Dajun, GONG Jianya, XIE Gangsheng, DU Daosheng. Error Entropy Band for Linear Segments in GIS[J]. Geomatics and Information Science of Wuhan University, 2002, 27(5): 462-466.
    [8]Wang Kongzheng, Wang Jiexian. An Algorithm for Error-band Determination of Curves in GIS[J]. Geomatics and Information Science of Wuhan University, 1999, 24(2): 142-144.
    [9]Zhang Jingxiong, Du Daosheng. A Fuzzy Field Approach to Mapping ε-error Band Models[J]. Geomatics and Information Science of Wuhan University, 1997, 22(3): 212-215.
    [10]Xu Caijun, Liu Dajie. The Broad Relative Error Ellipsoid(Ellipse)[J]. Geomatics and Information Science of Wuhan University, 1990, 15(2): 19-27.

Catalog

    Article views (1595) PDF downloads (962) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return