ZHANG Guoqin, ZHU Changqing, LI Guozhong. Measurement Indexes of Positional Uncertainty for Plane Line Segment Based on ε_m Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 431-435.
Citation: ZHANG Guoqin, ZHU Changqing, LI Guozhong. Measurement Indexes of Positional Uncertainty for Plane Line Segment Based on ε_m Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 431-435.

Measurement Indexes of Positional Uncertainty for Plane Line Segment Based on ε_m Model

Funds: 国家自然科学基金资助项目(40501058)
More Information
  • Received Date: January 24, 2009
  • Revised Date: January 24, 2009
  • Published Date: April 04, 2009
  • In this paper,the εm uncertainty model of line segments is studied further.Firstly,the error band boundary line is divided into 4 parts: left boundary line,right boundary line,left error semicircle and right error semicircle.The analytic expression about the 4 parts an of the error band boundary line for the εm uncertainty model of line segments are deduced by algebra method.Secondly,the visual graphics of the error band for the εm uncertainty model can be drawn using the analytic formula.Thirdly,the average error band width and the error band area are gotten which are used to measure the precision of the line uncertainty.
  • Related Articles

    [1]LUO Zhicai, ZHONG Bo, ZHOU Hao, WU Yunlong. Progress in Determining the Earth's Gravity Field Model by Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1713-1727. DOI: 10.13203/j.whugis20220537
    [2]CHEN Guoxiong, SUN Jinsong, LIU Tianyou. Wavelet Multi-scale Decomposition of Time Variable Gravity Field Detected by GRACE Satellite: a Case from Wenchuan Ms 8.0 Earthquake,2008[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 679-682.
    [3]LUO Jia, JIANG Weiping, WANG Haihong, ZOU Xiancai. Precision Analysis of SST Gravity Field Model in China[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 199-202.
    [4]LUO Jia, NING Jinsheng. Establishment and Analysis of the Spectrum Relationship Between Earth Gravity Field and KBR[J]. Geomatics and Information Science of Wuhan University, 2004, 29(11): 951-954,1007.
    [5]CHEN Junyong, WEN Hanjiang, CHENG Pengfei. On the Development of Geodesy in China[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 475-482.
    [6]NING Jingsheng. Following the Developments of the World,Devoting to the Study on the Earth Gravity Field[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 471-474,486.
    [7]Wang Dongming, Zhu Zhuowen. Geodetic Singularity Problem in Gravity Field[J]. Geomatics and Information Science of Wuhan University, 1999, 24(2): 99-102,111.
    [8]Ning Jinsheng. Developing the Earth's Gravity Field Approximation Theory[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 310-313,286.
    [9]Ning Jinsheng, Luo Zhicai, Chao Dingbo. The Present Situation on Satellite Gravity Gradiometry and Its Vistas in the Application of Physical Geodesy[J]. Geomatics and Information Science of Wuhan University, 1996, 21(4): 309-314.
    [10]Zhou Zhongmo, Chao Dingbo. The Observational Equation for Gravity Vector in Fourdimensional Integrated Geodesy Model[J]. Geomatics and Information Science of Wuhan University, 1987, 12(4): 10-19.
  • Cited by

    Periodical cited type(5)

    1. 曹冬冬. 基于位移与应变场的滑坡体时空形变特征研究. 大地测量与地球动力学. 2023(05): 498-504 .
    2. 刘同文,王慧敏,吴啸龙,张志进. 华北平原及其临区现今地壳形变特征. 测绘科学技术学报. 2021(02): 117-123 .
    3. 吴啸龙. 基于最小二乘配置在椭球面上解算喜马拉雅地区GPS应变分布. 地球物理学进展. 2018(03): 993-997 .
    4. 谢曦霖,许才军,温扬茂,周力璇. 一种基于多面函数的改进最小二乘配置方法. 武汉大学学报(信息科学版). 2018(04): 592-598 .
    5. 胡旭莉,王彪,于光喜,赵玲. 基于球坐标最小二乘配置模型的青藏南部喜马拉雅构造带地壳水平形变分析. 工程勘察. 2017(08): 56-60 .

    Other cited types(5)

Catalog

    Article views (915) PDF downloads (380) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return