Citation: | QU Shaobo, BAI Yanzheng, LIU Li, MA Yun, WANG Liang, WU Shuchao, YU Jianbo, ZHOU Zebing. On-Ground Test Method, Technology and Application of Space Electrostatic Accelerometer[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2028-2036. DOI: 10.13203/j.whugis20240374 |
Satellite gravity measurement is the only direct means to obtain the global gravity field data. As the core payload of satellite gravity measurement, electrostatic accelerometer has the characteristics of high resolution and small measurement range. The lack of performance detection and evaluation means directly limits the development level and application efficiency of space electrostatic accelerometer in China.
To meet the requirements of performance evaluation of high-precision accelerometers, research on ground test methods such as high-voltage suspension, torsion pendulum suspension, drop-tower test and development of the related technologies and devices have been carried out. The functional performance evaluation of high-precision electrostatic accelerometer series products was completed by combining various methods.
The high-voltage levitation test method was used to realize the long-term electrostatic suspension control of the test mass. Combined with the high-performance vibration isolation system, the ground test level reached 3×10-9 m/s2/Hz1/2 at 0.2 Hz. A torsional pendulum suspension test method was proposed, and the noise floor of the accelerometer reached about 2×10-11 m/s2/Hz1/2. And the six-degree-of-freedom control performance of the accelerometer was tested on the ground based on a vacuum tower drop device with a height of 20 m.
A comprehensive test method system suitable for ground performance evaluation of high-precision space electrostatic accelerometers has been developed, which meets the needs of performance evaluation of high-precision accelerometers in the chinese gravity satellites and other space missions.
[1] |
章传银, 胡建国, 党亚民, 等. 多种跟踪组合卫星重力场恢复方法初探[J]. 武汉大学学报(信息科学版), 2003, 28(S1): 137-141.
Zhang Chuanyin, Hu Jianguo, Dang Yamin, et al. Gravity Field Recovery Method with Several Kinds of Satellite Tracking Data[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 137-141.
|
[2] |
邹贤才, 李建成, 衷路萍, 等. 动力法校准GRACE星载加速度计[J]. 武汉大学学报(信息科学版), 2015, 40(3): 357-360.
Zou Xiancai, Li Jiancheng, Zhong Luping, et al. Calibration of the Accelerometers Onboard GRACE with the Dynamic Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 357-360.
|
[3] |
肖云, 王云鹏, 刘晓刚, 等. 空域最小二乘法用于重力卫星误差分析[J]. 武汉大学学报(信息科学版), 2019, 44(3): 340-346.
Xiao Yun, Wang Yunpeng, Liu Xiaogang, et al. Application of Space-Wise Least Square Method to Error Analysis for Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 340-346.
|
[4] |
罗志才, 钟波, 周浩, 等. 利用卫星重力测量确定地球重力场模型的进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1713-1727.
Luo Zhicai, Zhong Bo, Zhou Hao, et al. Progress in Determining the Earth’s Gravity Field Model by Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1713-1727.
|
[5] |
冉将军, 闫政文, 吴云龙, 等. 下一代重力卫星任务研究概述与未来展望[J]. 武汉大学学报(信息科学版), 2023, 48(6): 841-857.
Ran Jiangjun, Yan Zhengwen, Wu Yunlong, et al. Research Status and Future Perspectives in Next Generation Gravity Mission[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 841-857.
|
[6] |
肖云, 杨元喜, 潘宗鹏, 等. 中国卫星跟踪卫星重力测量系统性能与应用[J]. 科学通报, 2023, 68(20): 2655-2664.
Xiao Yun, Yang Yuanxi, Pan Zongpeng, et al. Performance and Application of the Chinese Satellite-To-Satellite Tracking Gravimetry System[J]. Chinese Science Bulletin, 2023, 68(20): 2655-2664.
|
[7] |
Xiao X, Yang Y, Pan P, et al.. Chinese Gravimetry Augment and Mass Change Exploring Mission Status and Future[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 67-75.
|
[8] |
王铖锐, 白彦峥, 蔡林, 等. 高精度静电惯性传感器[J]. 中国科学: 物理学 力学 天文学, 2023, 53(5): 26-42.
Wang Chengrui, Bai Yanzheng, Cai Lin, et al. High Precision Electrostatic Inertial Sensor[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2023, 53(5): 26-42.
|
[9] |
Touboul P, Foulon B, Willemenot E. Electrostatic Space Accelerometers for Present and Future Missions[J]. Acta Astronautica, 1999, 45(10): 605-617.
|
[10] |
Flury J, Bettadpur S, Tapley B D. Precise Accele⁃rometry Onboard the GRACE Gravity Field Satellite Mission[J]. Advances in Space Research, 2008, 42(8): 1414-1423.
|
[11] |
Luo J, Bai Y Z, Cai L, et al. The First Round Result from the TianQin-1 Satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013.
|
[12] |
Zhou A N, Cai L, Xiao C Y, et al. Non-gravitational Force Measurement and Correction by a Precision Inertial Sensor of TianQin-1 Satellite[J]. Classical and Quantum Gravity, 2022, 39(11): 115005.
|
[13] |
谭定银, 白彦峥, 屈少波, 等. 空间静电加速度计研究与应用[J]. 华中科技大学学报(自然科学版), 2022, 50(9): 96-103.
Tan Dingyin, Bai Yanzheng, Qu Shaobo, et al. Research and Application of Space Electrostatic Acce⁃lerometer[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(9): 96-103.
|
[14] |
刘跃龙, 周泽兵, 范继, 等. 精密重力测量研究设施建设进展[J]. 华中科技大学学报(自然科学版), 2022, 50(9): 1-10.
Liu Yuelong, Zhou Zebing, Fan Ji, et al. Construction Progress of Precision Gravity Measurement Facility[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(9): 1-10.
|
[15] |
Li G, Wu S C, Zhou Z B, et al. Design and Validation of a High-Voltage Levitation Circuit for Electrostatic Accelerometers[J]. Review of Scientific Instruments, 2013, 84(12): 125004.
|
[16] |
Liu L, Ye X, Wu S C, et al. A Low-Frequency Vibration Insensitive Pendulum Bench Based on Translation-Tilt Compensation in Measuring the Performances of Inertial Sensors[J]. Classical and Quantum Gravity, 2015, 32(19): 195016.
|
[17] |
Pei S X, Liu L, Wu S C, et al. Location Effect and Adjustment Scheme of the Translation-Tilt Compensation Bench for Accelerometer Performance Investigation[J]. Classical and Quantum Gravity, 2019, 36(23): 235023.
|
[18] |
Hu S, Pei S X, Hu M, et al. Noise Investigation of an Electrostatic Accelerometer by a High-Voltage Levitation Method Combined with a Translation-Tilt Compensation Pendulum Bench[J]. Review of Scientific Instruments, 2021, 92(6): 064502.
|
[19] |
Yang B X, Liu L, Wu S C, et al. A Low Frequency Horizontal Active Vibration Isolation Bench for Testing the Performance of High-Precision Space Inertial Sensors[J]. Classical and Quantum Gravity, 2021, 38(17): 175006.
|
[20] |
Mei B, Ma C, Bai Y Z, et al. A 50 Pico-g Resolution Integrated Test Facility for High-Precision Inertial Sensors[J]. Measurement Science and Technology, 2023, 34(11): 115016.
|
[21] |
Marque J P, Christophe B, Liorzou F, et al. The Ultra Sensitive Accelerometers of the ESA GOCE Mission[C]//The 59th International Astronautical Congress, Glasgow, Scotland, 2008.
|
[22] |
Zhou Z B, Gao S W, Luo J. Torsion Pendulum for the Performance Test of the Inertial Sensor for ASTROD-I[J]. Classical and Quantum Gravity, 2005, 22(10): S537-S542.
|
[23] |
Zhou Z B, Qu S B, Tu H B, et al. Progress of Ground Test of Inertial Sensor for Astrod I[J]. International Journal of Modern Physics D, 2008, 17(7): 985-992.
|
[24] |
Tu H B, Bai Y Z, Zhou Z B, et al. Performance Measurements of an Inertial Sensor with a Two-Stage Controlled Torsion Pendulum[J]. Classical and Quantum Gravity, 2010, 27(20): 205016.
|
[25] |
Zhou Z B, Liu L, Tu H B, et al. Seismic Noise Limit for Ground-Based Performance Measurements of an Inertial Sensor Using a Torsion Balance[J]. Classical and Quantum Gravity, 2010, 27(17): 175012.
|
[26] |
Tan D Y, Yin H, Zhou Z B. Seismic Noise Suppression for Ground-Based Investigation of an Inertial Sensor by Suspending the Electrode Cage[J]. Chinese Physics Letters, 2015, 32(9): 090401.
|
[27] |
Tan D Y, Liu L, Hu M, et al. Seismic Noise Effect Reduction Improvement for Ground-Based Investigation of Space Inertial Sensor by Suspending the Electrode Housing with an Individual Pendulum[J]. Classical and Quantum Gravity, 2022, 39(7): 075029.
|
[28] |
Li J, Liu Z F, Ma Y, et al. Seismic Noise Effect Suppression for the Performance Testing of High-Precision Space Electrostatic Accelerometers Using a Torsion Pendulum with Differential Configuration[J]. Measurement Science and Technology, 2024, 35(11): 115105.
|
[29] |
Christophe B, Boulanger D, Foulon B, et al. A New Generation of Ultra-Sensitive Electrostatic Accelerometers for GRACE Follow-On and Towards the Next Generation Gravity Missions[J]. Acta Astronautica, 2015, 117: 1-7.
|
[30] |
Selig H, Dittus H, Lämmerzahl C. Drop Tower Microgravity Improvement Towards the Nano-g Level for the MICROSCOPE Payload Tests[J]. Microgra⁃vity Science and Technology, 2010, 22(4): 539-549.
|
[31] |
Liu T Y, Wu Q P, Sun B Q, et al. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer[J]. Scientific Reports, 2016, 6: 31632.
|
[32] |
Liu R Q, Bai Y Z, Huang T, et al. Evaluation of Microgravity Level for the 2.0 s Vacuum Drop To⁃wer at the National Precise Gravity Measurement Facility (PGMF)[J].AIP Advances, 2024, 14(8): 085219.
|
[33] |
Qu S B, Xia X M, Bai Y Z, et al. Self-Calibration Method of the Bias of a Space Electrostatic Accele⁃rometer[J]. Review of Scientific Instruments, 2016, 87(11): 114502.
|
[34] |
Cai L, Bai Y Z, Li H Y, et al. Calibration and Validation of a Space Electrostatic Accelerometer Onboard Tianzhou-1 Cargo Spacecraft Using GNSS and Attitude Data[J]. Aerospace Science and Technology, 2023, 138: 108320.
|
[1] | LI Jianan, LI Yu, ZHAO Quanhua, JIANG Haonan, HONG Yong. SAR Image Absolute Radiometric Calibration Based on RCS Modeling of Communication Tower[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1746-1755. DOI: 10.13203/j.whugis20210052 |
[2] | CAO Jiannong. Modeling Method of Structured Feature Multi-scale Analysis for High Resolution Remote Sensing Image Information Extraction[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1943-1953. DOI: 10.13203/j.whugis20180253 |
[3] | YAN Xiongfeng, AI Tinghua, ZHANG Xiang, YANG Wei. A Vector Pyramid Model to Support Continuous Multi-scale Representation of Spatial Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 502-508. DOI: 10.13203/j.whugis20150723 |
[4] | LIU Po, GONG Jianhua. Parallel Construction of Global Pyramid for Large Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 117-122. DOI: 10.13203/j.whugis20130718 |
[5] | CHAI Yong, LIN Xueyuan, HE You. B-Spline Pyramidal Direction Filter Banks and Its Application to Remote Sensing Image Fusion[J]. Geomatics and Information Science of Wuhan University, 2010, 35(7): 873-876. |
[6] | LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358. |
[7] | JIANG Zhijun, YI Huarong. An Image Pyramid-Based Feature Detection and Tracking Algorithm[J]. Geomatics and Information Science of Wuhan University, 2007, 32(8): 680-683. |
[8] | MEI Wensheng, HAN Guoming, ZHANG Zhenglu. 3D Relative Datum Method in Positioning of Main Pylon of Cable-Stayed Bridge[J]. Geomatics and Information Science of Wuhan University, 2007, 32(2): 168-171. |
[9] | ZOU Qin, JIA Yonghong. Fusion of Remote Sensing Images Based on Morphological Pyramid and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2006, 31(11): 971-974. |
[10] | XIAO Jun, MO Yimin, HU Guoqing. High Precision Vertical Pendulum Tiltmeter for Measuring Earth Tide[J]. Geomatics and Information Science of Wuhan University, 2004, 29(11): 973-976,989. |