LIU Po, GONG Jianhua. Parallel Construction of Global Pyramid for Large Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 117-122. DOI: 10.13203/j.whugis20130718
Citation: LIU Po, GONG Jianhua. Parallel Construction of Global Pyramid for Large Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 117-122. DOI: 10.13203/j.whugis20130718

Parallel Construction of Global Pyramid for Large Remote Sensing Images

Funds: The Key Knowledge Innovative Project of the Chinese Academy of Sciences, No. KZCX2-EW-318; the National Key Technology R&D Program of China, No. 2014ZX10003002; the National Natural Science Foundation of China, No. 41371387.
More Information
  • Received Date: September 10, 2014
  • Published Date: January 04, 2016
  • The pyramid model is the basis for visualization and processing of massive remote sensing data in a virtual globe system. It produces large amounts of data tiles in the process of building pyramids however, and the traditional serial CPU algorithm has difficulties satisfying requests for large images. This paper proposes a parallel global pyramid approach that exploits GPU capabilities and multi-threading to enable memory-intensive and computation-intensive tasks. A two-level decomposition strategy was developed to migrate the performance bottlenecks in data transfers among the GPU, CPU, and disk. A multi-threading strategy was used to reduce the delay between CPU and disk, and pin-memory for GPU global delay. Finally, the GPU is used to complete large-scale parallel resample computing and constructing an octree structure used to maximize reuse of data in the graphic memory. Experimental results show that the proposed method can significantly improve pyramid construction speed for large remote sensing images.
  • [1]
    Goodchild M F, Guo H, Annoni A, et al. Next-Generation Digital Earth[J]. The National Academy of Sciences, 2012, 109(28):11 088-11 094
    [2]
    Brovelli M A, Zamboni G. Virtual Globes for 4D Environmental Analysis[J]. Applied Geomatics, 2012, 4(3):163-172
    [3]
    Turk F J, Hawkins J, Richardson K, et al. A Tropical Cyclone Application for Virtual Globes[J]. Computers & Geosciences, 2011, 37(1):13-24
    [4]
    Chien N Q, Keat T S. Google Earth as a Tool in 2-D Hydrodynamic Modeling[J]. Computers & Geosciences, 2011, 37(1):38-46
    [5]
    Tooth S. Virtual Globes:a Catalyst for the Re-enchantment of Geomorphology?[J]. Earth Surface Processes and Landforms, 2006, 31(9):1 192-1 194
    [6]
    Deng X. Research on Service Architecture and Algorithms for Grid spatial Data[J]. Acta Geodaetica et Cartographica Sinaca, 2003, 36(4):362-367(邓雪清. 栅格型空间数据服务体系结构与算法研究[J]. 测绘学报,2003, 36(4):362-367)
    [7]
    Viola I, Kanitsar A, Groller M E. Hardware-Based Nonlinear Filtering and Segmentation Using High-Level Shading Languages[M]. New York:IEEE Computer Society, 2003
    [8]
    Xie J, Yang C, Zhou B, et al. High-Performance Computing for the Simulation of Dust Storms[J]. Computers, Environment and Urban Systems, 2010, 34(4):278-290
    [9]
    Walsh S D, Saar M O, Bailey P, et al. Accelerating Geoscience and Engineering System Simulations on Graphics Hardware[J]. Computers & Geosciences, 2009, 35(12):2 353-2 364
    [10]
    Zhang Y, Liu P, Yang M. Accelerating Bipartite Graph Co-Clustering Based on GPU[J]. Geography and Geo-Information Science, 2013, 29(4):99-103(张宇,刘坡,杨敏华.基于GPU的二部图联合聚类并行算法研究[J].地理与地理信息科学,2013, 29(4):99-103)
    [11]
    Zhang J, You S. CudaGIS:Report on the Design and Realization of a Massive Data Parallel GIS on GPUs[C]. The Third ACM SIGSPATIAL International Workshop on GeoStreaming, Redondo Beach, California, USA,2012
    [12]
    Zhang B, Yang W, Gao L, et al. Real-Time Target Detection in Hyperspectral Images Based on Spatial-Spectral Information Extraction[J]. Eurasip Journal on Advances in Signal Processing, 2012, 2012(1):1-15
    [13]
    Steinbach M, Hemmerling R. Accelerating Batch Processing of Spatial Raster Analysis Using GPU[J]. Computers & Geosciences, 2012, 45:212-220
    [14]
    Giannesini F, Le Saux B. GPU-accelerated One-Class SVM for Exploration of Remote Sensing Data[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany,2012
    [15]
    Yang C, Wu H, Huang Q, et al. Using Spatial Principles to Optimize Distributed Computing for Enabling the Physical Science Discoveries[J]. The National Academy of Sciences, 2011, 108(14):5 498-5 503
    [16]
    Xiao H, Zhou Q, Zhang Z. Parallel Algorithm of Harris Corner Detection Based on Multi-GPU[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7):876-881 (肖汉, 周清雷, 张祖勋. 基于多GPU的Harris角点检测并行算法[J].武汉大学学报·信息科学版,2012, 37 (7):876-881)
    [17]
    Kang J, Du Z, Liu R. Parallel Image Resample Algorithm Based on GPU for Land Remote Sensing Data Management[J]. Journal of Zhejiang University(Science Edition), 2011, 38(6):695-700(康俊锋, 杜震洪, 刘仁义, et al. 基于GPU加速的遥感影像金字塔创建算法及其在土地遥感影像管理中的应用[J]. 浙江大学学报(理学版), 2011, 38(6):695-700)
    [18]
    Parker J A, Kenyon R V, Troxel D E. Comparison of Interpolating Methods for Image Resampling[J]. IEEE Transactions on Knowledge and Data Engineering, 1983, 2(1):31-39
  • Related Articles

    [1]ZHANG Fan, CHAI Hongzhou, WANG Min, XIAO Guorui, ZHANG Qiankun, DU Zhenqiang. Undifferenced and Uncombined PPP Ambiguity Resolution Combined with GPS/GLONASS Triple-Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1900-1910. DOI: 10.13203/j.whugis20220315
    [2]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [3]SONG Weiwei, ZHAO Xinke, LOU Yidong, SUN Weibin, ZHAO Zhengyu. Performance Evaluation of BDS-3 PPP-B2b Service[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 408-415. DOI: 10.13203/j.whugis20200686
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]GU Shengfeng, DAI Chunqi, HE Chengpeng, FANG Lizhe, WANG Zihao. Analysis of Semi-tightly Coupled Multi-GNSS PPP-RTK/VIO for Vehicle Navigation in Urban Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1852-1861. DOI: 10.13203/j.whugis20210615
    [6]YAO Yibin, FENG Xinying, PENG Wenjie, LIU Lei. Local Atmosphere Augmentation Based on CORS for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1739-1748. DOI: 10.13203/j.whugis20180131
    [7]SONG Chao, HAO Jinming. Instantaneous Re-convergence of Kinematic PPP by the Use of Relationship Between Multiple Receiver Ambiguity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 595-599, 690. DOI: 10.13203/j.whugis20140747
    [8]GUO Fei, ZHANG Xiaohong. Processing Capacity for GPS Data with Clock Slip Using Online PPP Services[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1333-1336.
    [9]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [10]ZHAO Jianhu, WANG Shengping, ZHANG Hongmei, WEN Weidong. Long-Distance and On-the-Fly GPS Tidal Level Measurement Based on GPS PPK/PPP[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 910-913.
  • Cited by

    Periodical cited type(13)

    1. 冯晓亮,陈欢,李厚芝. 不同观测环境中的多模GNSS数据质量自动化检测方法. 测绘工程. 2024(06): 56-61 .
    2. 刘嘉伟,孙保琪,韩蕊,张喆,王侃,袁海波,杨旭海. GNSS多系统RTK授时性能分析. 导航定位与授时. 2023(03): 49-58 .
    3. 王浩浩,郝明,庄文泉. GNSS实时卫星钟差估计在地震监测中的应用. 导航定位与授时. 2023(03): 108-116 .
    4. 周长江,余海锋,王林伟,雷云平,岳彩亚. 无频间钟偏差改正的BDS-2三频非组合PPP随机模型优化. 测绘通报. 2023(12): 164-168 .
    5. 潘丽静,刘翔,夏川茹,王雷雷. GNSS精密卫星钟差实时估计与分析. 城市勘测. 2021(06): 73-76 .
    6. 郭磊,王甫红,桑吉章,张万威. 一种新的利用历元间位置变化量约束的GNSS导航算法. 武汉大学学报(信息科学版). 2020(01): 21-27 .
    7. 陶钧,张柔. GPS/BeiDou/Galileo/GLONASS实时精密卫星钟差估计. 测绘地理信息. 2020(03): 102-106 .
    8. 黄观文,王浩浩,谢威,曹钰. GNSS实时卫星钟差估计技术进展. 导航定位与授时. 2020(05): 1-9 .
    9. 张浩,赵兴旺,陈佩文,谢毅. GPS/BDS卫星钟差融合解算模型及精度分析. 合肥工业大学学报(自然科学版). 2020(09): 1192-1196 .
    10. 叶珍,李浩军. GNSS卫星钟差估计与结果分析. 导航定位与授时. 2019(03): 88-94 .
    11. 盛剑锋,张彩红,谭凯. 一种全球导航卫星系统钟差估计优化方案的量化研究. 科学技术与工程. 2019(14): 14-21 .
    12. 王尔申,赵珩,曲萍萍,庞涛,孙军. 基于拉格朗日插值法的卫星导航空间信号精度评估算法. 沈阳航空航天大学学报. 2019(04): 43-48 .
    13. 李云,崔文刚. 精密单点定位技术发展及应用. 科学技术与工程. 2019(27): 1-11 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return