LI Yi, WANG Li, SHU Bao, TIAN Yunqing, WANG Bingjie. An Optimal Allocation Method for ARAIM Risk Considering DOP[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230482
Citation: LI Yi, WANG Li, SHU Bao, TIAN Yunqing, WANG Bingjie. An Optimal Allocation Method for ARAIM Risk Considering DOP[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230482

An Optimal Allocation Method for ARAIM Risk Considering DOP

More Information
  • Received Date: May 18, 2024
  • Available Online: June 26, 2024
  • Objectives: The advanced receiver autonomous integrity monitoring (ARAIM) algorithm equally allocates the integrity and continuity risk, which leads to a conservative protection level (PL) calculation. Methods: This paper systematically analyses the factors affecting the protection level calculation, proposes an optimal risk allocation method for ARAIM considering the dilution of precision (DOP), and verifies the effectiveness of the method by using three kinds of data from the MGEX (multi-GNSS experiment) station, vehicle and airborne experiments. Results: The results show that the proposed method can realize a tighter envelope of the protection level to the position error, and its performance is better than that of the half-interval search method. Compared to the riskaveraged method, the PL improvement rates of BDS in the three types of experiments are 7.5%, 11.6% and 8.8%, respectively. In addition, the PL optimization effect is closely related to the satellite observation geometry, and the improvement effect varies within different systems and regions. Conclusions: For BDS, the improvement in the non-Asia-Pacific region is better than that in the AsiaPacific region, with 3.6 m and 1.0 m respectively in the two regions. In the Asia-Pacific region, the optimization effect in BDS and BDS/GPS is 1.0 m and 0.6 m, respectively, with the single BDS enhancement being more significant.
  • [1]
    李博峰, 苗维凯, 陈广鄂. 多频多模GNSS高精度定位关键技术与挑战[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1769-1783.
    [2]
    李子申, 王宁波, 李亮, 等. 北斗高精度高可信PPP-RTK服务基本框架[J]. 导航定位与授时, 2023, 10(02): 7-15.
    [3]
    苏先礼. GNSS完好性监测体系及辅助性能增强技术研究[D]. 上海交通大学, 2013.
    [4]
    王尔申, 杨迪, 宏晨, 等. ARAIM技术研究进展[J]. 电信科学, 2019, 35(08): 128-138.
    [5]
    WG-C. ARAIM Technical Subgroup Milestone 3 Report [R]: ARAIM Technical Subgroup, 2016.
    [6]
    Hexagon. Quantifying integrity [Z]. Velocity. 2019: 16-22
    [7]
    Mattis J N, Chao E L, Duke E C. 2017 Federal Radionavigation Plan [R]: United States. Dept. of Defense, 2017.
    [8]
    Wang S, Zhan X, Zhai Y, et al. Ensuring high navigation integrity for urban air mobility using tightly coupled GNSS/INS system [J]. J Aeronaut Astronaut Aviat, 2020, 52(4): 429-442.
    [9]
    赵昂, 杨元喜, 许扬胤, 等. GNSS单系统及多系统组合完好性分析[J]. 武汉大学学报(信息科学版), 2020, 45(01): 72-80.
    [10]
    田云青, 王利, 舒宝, 等. 北斗系统ARAIM可用性评估[J]. 测绘学报, 2021, 50(07): 879-890.
    [11]
    El-Mowafy A, Yang C. Limited sensitivity analysis of ARAIM availability for LPV-200 over Australia using real data [J]. Advances in Space Research, 2016, 57(2): 659-670.
    [12]
    Blanch J, Walter T, Enge P. RAIM with optimal integrity and continuity allocations under multiple failures [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1235-1247.
    [13]
    Blanch J, Walter T, Enge P. Optimal positioning for advanced RAIM [J]. Navigation: Journal of the Institute of Navigation, 2013, 60(4): 279-289.
    [14]
    王尔申, 孙薪蕙, 曲萍萍, 等. 基于动态粒子群算法的ARAIM可用性优化方法[J]. 测绘学报, 2024, 53(1): 137-145.
    [15]
    韩清清, 王利, 罗思龙, 等. ARAIM算法的风险概率优化分配[J]. 测绘学报, 2021, 50(12): 1751-1761.
    [16]
    Li Y, Zhang Z, He X, et al. Realistic stochastic modeling considering the PDOP and its application in real-time GNSS point positioning under challenging environments [J]. Measurement, 2022, 197: 111342.
    [17]
    Blanch J, Walker T, Enge P, et al. Baseline advanced RAIM user algorithm and possible improvements [J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 713-732.
    [18]
    Blanch J, Walter T, Enge P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation [C]. Proceedings of the 25th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012): 2012: 2828-2849.
    [19]
    吴云. 最优估计与假设检验理论及其在GNSS中的应用[M]. 北京: 科学出版社, 2015.
    [20]
    李彬, 吴云, 李征航. GNSS接收机自主完备性监测高级算法的有效性验证[J]. 武汉大学学报(信息科学版), 2015, 40(6): 800-804.
    [21]
    Li L, Wang H, Jia C, et al. Integrity and continuity allocation for the RAIM with multiple constellations [J]. GPS Solutions, 2017, 21: 1503-1513.
    [22]
    牛飞, 陈金平, 高为广, 等. 非正态分布假设下的完好性阈值计算与分析[J]. 武汉大学学报(信息科学版), 2012, 37(12): 1429-1433.
    [23]
    Qi H, Wang X, Cui X, et al. ARAIM based on fault detector reuse for reducing computational load [J]. GPS Solutions, 2023, 27(2): 78.
    [24]
    Teng Y, Wang J. New characteristics of geometric dilution of precision (GDOP) for multi-GNSS constellations [J]. The Journal of Navigation, 2014, 67(6): 1018-1028.
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133.
    [3]FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948.
    [4]QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99.
    [5]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [6]LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609.
    [7]LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998.
    [8]YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254.
    [9]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.
    [10]Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return