LI Yongwei, XU Linrong, CHEN Yunhao, DENG Zhixing. Intergrated Space-Air-Train-Ground Muti-source Techniques for Early Detection of Subgrade Disasters and Service Status of Railway Subgrade[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1392-1406. DOI: 10.13203/j.whugis20230404
Citation: LI Yongwei, XU Linrong, CHEN Yunhao, DENG Zhixing. Intergrated Space-Air-Train-Ground Muti-source Techniques for Early Detection of Subgrade Disasters and Service Status of Railway Subgrade[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1392-1406. DOI: 10.13203/j.whugis20230404

Intergrated Space-Air-Train-Ground Muti-source Techniques for Early Detection of Subgrade Disasters and Service Status of Railway Subgrade

More Information
  • Received Date: October 23, 2023
  • Available Online: January 15, 2024
  • Objectives 

    Because of high frequency of extreme weather, railway subgrade disaster shows a trend of increasing, great harmfulness and is hard to detect in advance. Even a small-size subgrade disaster may cause railway paralysis, which prevents the development of transportation. Many incidents illustrate that the earliest subgrade disaster always appeared in areas where no case ever reported before. It means that traditional monitoring methods are hard to detect hidden danger area. Thus, a promising method is urgent to be proposed for meeting the monitoring requirement for railway safety.

    Methods 

    First, the characteristics of subgrade disaster are summarized under different disaster-pregnant environments, and the advantages of various monitoring methods are discussed to find a collaborative applications method for early identification of subgrade disaster. The potential hazards that may cause damage to subgrade structure and the deterioration degree of subgrade are considered as the main monitoring object of subgrade service status, including subgrade deformation monitoring, structural health monitoring, geological hazard monitoring along the railway, track irregularity, and external environmental monitoring. Second, an investigative approach based on the integration of space-air-train-ground muti-source techniques is proposed to detect the geohazards and monitor the service status of railway subgrade. It means that collaborative application of different monitoring methods, cooperative analysis of different scales and resolutions data and collaboration of between various railway departments are required. Two monitoring schemes for subgrade disasters and service status of subgrade are proposed based on the integration of multi-source and multi-scale monitoring technique. Finally, the development direction of subgrade service status monitoring is discussed.

    Results and Conclusions 

    This monitoring system has been applied in the identification of subgrade service status in the Shanghai-Nanjing high speed railway, which can quickly investigate the location of the disasters and the deterioration degree of subgrade.

  • [1]
    铁路局网站. 2016年铁路安全情况公告[R/OL].国家铁路局, http://www.nra.gov.cn, 2016.

    National Railway Administration of the People's Republic of China. 2016 Railway Safety Announcement[R/OL]. National Railway Administration of the People's Republic of China,http://www.nra.gov.cn, 2016.
    [2]
    Wu Y, Fu H R, Bian X C, et al. Impact of Extreme Climate and Train Traffic Loads on the Performance of High-Speed Railway Geotechnical Infrastructures[J]. Journal of Zhejiang University: Science A, 2023, 24(3): 189-205.
    [3]
    于进学. 新建客运专线和既有线并行地段路基病害的分析与处理[J]. 铁道建筑, 2009, 49(5): 87-88.

    Yu Jinxue. Analysis and Treatment of Subgrade Diseases in Parallel Sections of Newly-Built Passenger Dedicated Lines and Existing Lines[J]. Railway Engineering, 2009, 49(5): 87-88.
    [4]
    谭家华. 张吉怀高速铁路深路堑边坡失稳机理及治理措施[J]. 铁道建筑, 2023, 63(7): 138-143.

    Tan Jiahua. Instability Mechanism and Treatment Measures of Deep Cutting Slope of Zhangjiajie-Jishou-Huaihua High Speed Railway[J]. Railway Engineering, 2023, 63(7): 138-143.
    [5]
    铁路局网站. “10.15”黎湛线43031次货物列车脱轨铁路交通较大事故调查情况[R/OL].国家铁路局, http://www.nra.gov.cn, 2020.

    National Railway Administration of the People's Republic of China. Investigation on Major Railway Traffic Accidents Caused by Derailment of 43031 Freight Trains on the “10.15” Lizhan Line [R/OL]. National Railway Administration of the People's Republic of China, http://www.nra.gov.cn, 2020.
    [6]
    Liu C, Li N, Wu H B, et al. Detection of High-Speed Railway Subsidence and Geometry Irregularity Using Terrestrial Laser Scanning[J]. Journal of Surveying Engineering, 2014, 140(3):04014009.
    [7]
    佘小年. 崩塌、滑坡地质灾害监测现状综述[J]. 铁道工程学报, 2007, 24(5): 6-11.

    She Xiaonian. Comprehensive Comments on the Present Situation of Monitoring Collapse and Landslide[J].Journal of Railway Engineering Society, 2007, 24(5): 6-11.
    [8]
    王利. 地质灾害高精度GPS监测关键技术研究[D]. 西安: 长安大学, 2014.

    Wang Li. A Study on Key Technology of High Precision GPS Monitoring for Geological Hazard[D]. Xi’an: Chang’an University, 2014.
    [9]
    杜源, 王纯, 张勤, 等. 顾及黄土滑坡灾害状态特征的实时GNSS滤波算法[J]. 武汉大学学报(信息科学版), 2023, 48(7): 1216-1222.

    Du Yuan, Wang Chun, Zhang Qin, et al. Real-Time GNSS Filtering Algorithm Considering State Characteristics of Loess Landslide Hazards[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1216-1222.
    [10]
    Xing X M, Chang H C, Chen L F, et al. Radar Interferometry Time Series to Investigate Deformation of Soft Clay Subgrade Settlement: A Case Study of Lungui Highway, China[J]. Remote Sensing, 2019, 11(4): 429.
    [11]
    Dheenathayalan P, Small D, Schubert A, et al. High-Precision Positioning of Radar Scatterers[J]. Journal of Geodesy, 2016, 90(5): 403-422.
    [12]
    Suo Z Y, Zhang J Q, Li M, et al. Improved InSAR Phase Noise Filter in Frequency Domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1185-1195.
    [13]
    Jung J, Kim D J, Lavalle M, et al. Coherent Change Detection Using InSAR Temporal Decorrelation Model: A Case Study for Volcanic Ash Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5765-5775.
    [14]
    Gao Zhiliang, Xie Mingli, Ju Nengpan, et al. Multi-source Remote Sensing Dynamic Deformation Monitoring of Accumulation Landslide[J]. Geomatics and Information Science of Wuhan University, 2023, DOI:10.13203/j.whugis20220149. (高志良, 解明礼, 巨能攀, 等. 堆积层滑坡多源遥感动态演变特征分析研究[J]. 武汉大学学报 (信息科学版),2023, DOI:10.13203/j.whugis20220149) doi: 10.13203/j.whugis20220149
    [15]
    周正, 赵国堂. 轨道质量指数计算问题的探讨[J]. 中国铁道科学, 2003, 24(3): 64-68.

    Zhou Zheng, Zhao Guotang. Calculation Method of Track Quality Index[J]. China Railway Science, 2003, 24(3): 64-68.
    [16]
    胡熠, 谢强, 李朝阳, 等. 岩溶路基注浆质量综合物探检测方法与评价研究[J]. 工程地质学报, 2015, 23(2): 344-351.

    Hu Yi, Xie Qiang, Li Chaoyang, et al. Comprehensive Geophysical Detection Method and Evaluation of Karst Roadbed Grouting[J]. Journal of Engineering Geology, 2015, 23(2): 344-351.
    [17]
    董炬洪, 赵志刚. 高速铁路无砟轨道填方路堤病害加固设计与效果分析[J]. 铁道科学与工程学报, 2013, 10(2): 66-73.

    Dong Juhong, Zhao Zhigang. Analysis of the Strengthening Design and for Fill Embankment Disease of High-Speed Railway[J]. Journal of Railway Science and Engineering, 2013, 10(2): 66-73.
    [18]
    Gunn D A, Chambers J E, Uhlemann S, et al. Moisture Monitoring in Clay Embankments Using Electrical Resistivity Tomography[J]. Construction and Building Materials, 2015, 92: 82-94.
    [19]
    Lei T J, Wang J B, Li X Y, et al. Flood Disaster Monitoring and Emergency Assessment Based on Multi-source Remote Sensing Observations[J]. Water, 2022, 14(14): 2207.
    [20]
    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7): 957-966.

    Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966.
    [21]
    吴立新, 李佳, 苗则朗, 等. 冰川流域孕灾环境及灾害的天空地协同智能监测模式与方向[J]. 测绘学报, 2021, 50(8): 1109-1121.

    Wu Lixin, Li Jia, Miao Zelang, et al. Pattern and Directions of Spaceborne-Airborne-Ground Collaborated Intelligent Monitoring on the Geohazards Developing Environment and Disasters in Glacial Basin[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1109-1121.
    [22]
    孙琪皓,刘桂卫,王飞,等.铁路地质灾害早期识别与监测预警技术及应用研究[J/OL].铁道标准设计, 2024, DOI: org/10.13238/j.issn.1004-2954.202302100005. doi: org/10.13238/j.issn.1004-2954.202302100005

    Sun Qihao, Liu Guiwei, Wang Fei, et al. Research and Application of Early Identification, Monitoring and Warning Technology of Railway Geological Disasters[J/OL]. Railway Standard Design, 2024, DOI: org/10.13238/j.issn.1004-2954.202302100005. doi: org/10.13238/j.issn.1004-2954.202302100005
    [23]
    张冠军. 高速铁路运营监测技术综述与展望[J]. 铁道勘察, 2023, 49(1): 7-11.

    Zhang Guanjun. Overview and Prospect of High-Speed Railway Operation Monitoring Technology[J]. Railway Investigation and Surveying, 2023, 49(1): 7-11.
    [24]
    Liu K, Wang M, Zhou T J. Increasing Costs to Chinese Railway Infrastructure by Extreme Precipitation in a Warmer World[J]. Transportation Research Part D: Transport and Environment, 2021, 93: 102797.
    [25]
    宋陶然. 复杂艰险山区铁路线路-结构物-大临工程多目标智能协同优化[D]. 长沙: 中南大学, 2023.

    Song Taoran. Multi-objective Concurrent Intelligent Optimization of Railway Alignments, Structures and Large-Scale Auxiliary Construction Projects in Complex Mountainous Regions[D]. Changsha: Central South University, 2023.
    [26]
    朱颖, 魏永幸. 汶川地震铁路工程震害特征及工程抗震设计对策思考[J]. 岩石力学与工程学报, 2010, 29(S1): 3378-3386.

    Zhu Ying, Wei Yongxing. Characteristics of Earthquake Damage of Railway Engineering in Wenchuan Earthquake and Countermeasures for Seismic Design of Engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3378-3386.
    [27]
    史培军, 杨文涛. 山区孕灾环境下地震和极端天气气候对地质灾害的影响[J]. 气候变化研究进展, 2020, 16(4): 405-414.

    Shi Peijun, Yang Wentao. Compound Effects of Earthquakes and Extreme Weathers on Geohazards in Mountains[J]. Climate Change Research, 2020, 16(4): 405-414.
    [28]
    牟凯. 山区铁路边坡危岩早期识别与风险评价方法研究[D]. 北京: 北京交通大学, 2022.

    Mou Kai. Research on Early Identification and Risk Evaluation Methods of Dangerous Rocks on Railway Slopes in Mountainous Areas[D].Beijing: Beijing Jiaotong University, 2022.
    [29]
    郑琅, 张欣, 王立娟. 四川省甘洛县山体滑坡应急调查与成因机制分析[J]. 人民长江, 2022, 53(8): 117-122.

    Zheng Lang, Zhang Xin, Wang Lijuan. Emergency Investigation and Formation Mechanism of Landslide in Ganluo County, Sichuan Province[J]. Yangtze River, 2022, 53(8): 117-122.
    [30]
    张仲礼. 南昆铁路施工机械化综述[J]. 建筑机械, 1994(1): 35-37.

    Zhang Zhongli. Summary of Construction Mechanization of Nanning-Kunming Railway[J]. Construction Machinery, 1994(1): 35-37.
    [31]
    刘建友, 赵勇, 吕刚, 等. 隧道下穿高速铁路路基风险分级及风险评价方法研究[J]. 现代隧道技术, 2020, 57(6): 8-16.

    Liu Jianyou, Zhao Yong, Gang Lü, et al. Research on Risk Classification and Assessment Method for Tunnels Crossing Under High-Speed Railway Subgrade[J]. Modern Tunnelling Technology, 2020, 57(6): 8-16.
    [32]
    谢启新. 京广线岳阳段防洪问题[J]. 路基工程, 1999(5): 12-15.

    Xie Qixin. Flood Control in Yueyang Section of Beijing-Guangzhou Railway[J]. Subgrade Engineering, 1999(5): 12-15.
    [33]
    Fruneau B, Achache J, Delacourt C. Observation and Modelling of the Saint-Étienne-de-Tinée Landslide Using SAR Interferometry[J]. Tectonophysics, 1996, 265(3/4): 181-190.
    [34]
    Galve J P, Castaneda C, Gutierrez F. Railway Deformation Detected by DInSAR over Active Sinkholes in the Ebro Valley Evaporite Karst, Spain[J]. Natural Hazards and Earth System Sciences, 2015, 15(11): 2439-2448.
    [35]
    刘欢, 王立娟, 马松, 等. DInSAR技术在成昆铁路复线路基及边坡垂直变形监测中的应用[J]. 铁道建筑, 2020, 60(3): 67-72.

    Liu Huan, Wang Lijuan, Ma Song, et al. Application of D-InSAR Technology in Vertical Deformation Monitoring of Subgrade and Slope in Chengdu-Kunming Double Track Railway[J]. Railway Enginee-ring, 2020, 60(3): 67-72.
    [36]
    许文斌, 罗兴军, 朱建军, 等. InSAR火山形变监测与参数反演研究进展[J]. 武汉大学学报(信息科学版), 2023, 48(10): 1632-1642.

    Xu Wenbin, Luo Xingjun, Zhu Jianjun, et al. Review of Volcano Deformation Monitoring and Modeling with InSAR[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1632-1642.
    [37]
    陈玄, 高伟, 段光耀, 等. 京津城际铁路(北京段)沉降监测及影响因素分析[J]. 遥感信息, 2020, 35(3): 78-84.

    Chen Xuan, Gao Wei, Duan Guangyao, et al. Settlement Monitoring and Influencing Factor Analysis of Beijing-Tianjin Intercity Railway(Beijing Section)[J]. Remote Sensing Information, 2020, 35(3): 78-84.
    [38]
    Luo Q L, Zhou G Q, Perissin D. Monitoring of Subsidence Along Jingjin Inter-City Railway with High-Resolution TerraSAR-X MT-InSAR Analysis[J]. Remote Sensing, 2017, 9(7): 717.
    [39]
    Lai W, Shen Q, Wang H, et al. InSAR-Derived Land Subsidence in Wuhan Between 2015 and 2020[J]. All Earth, 2022, 34(1): 224-242.
    [40]
    Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
    [41]
    Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460-3470.
    [42]
    Gao Z, He X F, Xiao R Y, et al. Development of an Imagewise Stacking Method to Mitigate Atmospheric Effect with an Application to Lianyan Railway[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4787-4797.
    [43]
    Wang H Y, Chang L, Markine V. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data[J]. Sensors, 2018, 18(2): 413.
    [44]
    Zhu Y R, Qiu H J, Cui P, et al. Early Detection of Potential Landslides Along High-Speed Railway Lines: A Pressing Issue[J]. Earth Surface Processes and Landforms, 2023, 48(15): 3302-3314.
    [45]
    王栋,张广泽,徐正宣,等. 基于时间序列InSAR技术的铁路地质灾害识别研究 [J]. 地质灾害与环境保护, 2019, 30 (3): 85-91]

    Wang dong, Zhang guangze, Xu Zhengxuanet al.,Research on Railway Geohazards Early Detection Based on Time-Series InSAR Technology[J]. Journal of Geological Hazards and Environment Preservation, 2019, 30 (3): 85-91.
    [46]
    Journault J, Macciotta R, Hendry M T, et al. Mea suring Displacements of the Thompson River Valley Landslides, South of Ashcroft, BC, Canada, Using Satellite InSAR[J]. Landslides, 2018, 15(4): 621-636.
    [47]
    Peduto D, Huber M, Speranza G, et al. DInSAR Data Assimilation for Settlement Prediction: A Case Study of a Railway Embankment in the Netherlands[J]. Canadian Geotechnical Journal, 2017, 54(4): 502-517.
    [48]
    Liu X X, Wang Y J, Yan S Y. Interferometric SAR Time Series Analysis for Ground Subsidence of the Abandoned Mining Area in North Peixian Using Sentinel-1A TOPS Data[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(3): 451-461.
    [49]
    Xiang W, Zhang R, Liu G X, et al. Extraction and Analysis of Saline Soil Deformation in the Qarhan Salt Lake Region (in Qinghai, China) by the Sentinel SBAS-InSAR Technique[J]. Geodesy and Geodynamics, 2022, 13(2): 127-137.
    [50]
    Shami S, Azar M K, Nilfouroushan F, et al. Assessments of Ground Subsidence Along the Railway in the Kashan Plain, Iran, Using Sentinel-1 Data and NSBAS Algorithm[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102898.
    [51]
    苗晓岐. 多源遥感技术在藏东南艰险复杂山区泥石流物源识别中的应用[J]. 地质通报, 2021, 40(12): 2052-2060.

    Miao Xiaoqi. Application of Multi-source Remote Sensing Technology in the Identification of Debris Flow Source Within Complex Mountainous Areas in Southeast Tibet[J]. Geological Bulletin of China, 2021, 40(12): 2052-2060.
    [52]
    刘桂卫, 王长进, 李国和, 等. 遥感技术在既有铁路地灾防治中应用方法研究[J]. 铁道工程学报, 2019, 36(6): 23-27.

    Liu Guiwei, Wang Changjin, Li Guohe, et al. Application Research on the Remote Sensing Technology in Geological Disaster Prevention and Control of Existing Railway[J]. Journal of Railway Engineering Society, 2019, 36(6): 23-27.
    [53]
    Huntley D, Rotheram-Clarke D, Pon A, et al. Benchmarked Radarsat-2, Sentinel-1 and Radarsat Constellation Mission Change-Detection Monitoring at North Slide, Thompson River Valley, British Columbia: Ensuring a Landslide-Resilient National Railway Network[J]. Canadian Journal of Remote Sensing, 2021, 47(4): 635-656.
    [54]
    吴立新, 许志华, 范松滔, 等. 植被稀疏地区沟蚀变化的地面激光扫描监测与沟蚀量估算[J]. 武汉大学学报(信息科学版), 2017, 42(10): 1343-1349.

    Wu Lixin, Xu Zhihua, Fan Songtao, et al. Gully Erosion TLS Monitoring and Estimation in Area of Sparse Vegetation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1343-1349.
    [55]
    Stringer J, Brook M S, Justice R. Post-Earthquake Monitoring of Landslides Along the Southern Kaikōura Transport Corridor, New Zealand[J]. Landslides, 2021, 18(1): 409-423.
    [56]
    李小玲, 胡才源, 孙全福, 等. 无人机遥感在高山峡谷区崩塌地质调查中的应用[J]. 地理空间信息, 2021, 19(1): 78-81.

    Li Xiaoling, Hu Caiyuan, Sun Quanfu, et al. Application of UAV Remote Sensing in Geological Survey of Collapses in Alpine Canyon Region[J]. Geospatial Information, 2021, 19(1): 78-81.
    [57]
    张国全. 降低高速铁路TQI指标相关分析[J]. 铁道建筑技术, 2016(2): 75-78.

    Zhang Guoquan. Correlation Analysis on How to Reduce the TQI Index of High-Speed Railway[J]. Railway Construction Technology, 2016(2): 75-78.
    [58]
    王国祥, 高俊, 卢建康. 高速铁路轨道几何状态控制指标及检测技术探讨[J]. 铁道勘察, 2012, 38(1): 1-4.

    Wang Guoxiang, Gao Jun, Lu Jiankang. Control Index and Inspection Technique of Track Geometry State in High-Speed Railway[J]. Railway Investigation and Surveying, 2012, 38(1): 1-4.
    [59]
    庄鹏, 姜楠. 利用轨道质量指数(TQI)指导线路养护维修[J]. 铁道运营技术, 2008, 14(1): 27-29.

    Zhuang Peng, Jiang Nan. Using Track Quality Index (TQI) to Guide Line Maintenance[J]. Railway Operation Technology, 2008, 14(1): 27-29.
    [60]
    Liu R K, Xu P, Sun Z Z, et al. Establishment of Track Quality Index Standard Recommendations for Beijing Metro[J]. Discrete Dynamics in Nature and Society, 2015, 2015: 473830.
    [61]
    Lasisi A, Attoh-Okine N. An Unsupervised Learning Framework for Track Quality Index and Safety[J]. Transportation Infrastructure Geotechnology, 2020, 7(1): 1-12.
    [62]
    Li M, Persson I, Spännar J, et al. On the Use of Second-Order Derivatives of Track Irregularity for Assessing Vertical Track Geometry Quality[J]. Vehicle System Dynamics, 2012, 50(sup1): 389-401.
    [63]
    康熊, 王卫东, 刘金朝. 基于RAMS的高速铁路轨道平顺状态综合评价体系研究[J]. 中国铁道科学, 2013, 34(2): 13-17.

    Kang Xiong, Wang Weidong, Liu Jinzhao. Research on Comprehensive Evaluation System for Track Irregularity of High-Speed Railway Based on RAMS[J]. China Railway Science, 2013, 34(2): 13-17.
    [64]
    Lu C F, Cai C X. Overview on Safety Management and Maintenance of High-Speed Railway in China[J]. Transportation Geotechnics, 2020, 25: 100397.
    [65]
    陈舒阳, 路良恺, 姚永胜. 基于TQI与沉降关联性分析的高铁路基服役状态监测[J]. 土木与环境工程学报(中英文), 2020, 42(6): 63-70.

    Chen Shuyang, Lu Liangkai, Yao Yongsheng. Service Status Monitoring of High-Speed Railway Subgrade Based on Correlation Analysis of Track Quality Index and Settlement[J]. Journal of Civil and Environmental Engineering, 2020, 42(6): 63-70.
    [66]
    刘维正, 徐林荣, 左珅, 等. 桩筏地基加固对紧邻既有线路基的影响[J]. 交通运输工程学报, 2015, 15(3): 16-26.

    Liu Weizheng,Xu Linrong,Zuo Shen, et al. Influence of Pile-Raft Foundation Reinforcement on Subgrade of Adjacent Existing Railway[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 16-26.
    [67]
    Kromer R A, Hutchinson D J, Lato M J, et al. Identifying Rock Slope Failure Precursors Using LiDAR for Transportation Corridor Hazard Management[J]. Engineering Geology, 2015, 195: 93-103.
    [68]
    武文波, 张国辉, 梁洪武, 等. 采用全自动全站仪的滑坡监测系统研究[J]. 仪器仪表学报, 2004, 25(S1): 412-413.

    Wu Wenbo, Zhang Guohui, Liang Hongwu, et al. Research on Landslide Monitoring System Using Automatic Total Station[J]. Chinese Journal of Scientific Instrument, 2004, 25(S1): 412-413.
    [69]
    Jia C, Yang X, Wu J, et al. Monitoring Analysis and Numerical Simulation of the Land Subsidence in Linear Engineering Areas[J]. KSCE Journal of Civil Engineering, 2021, 25(7): 2674-2689.
    [70]
    Quang L H, Loi D H, Sassa K, et al. Susceptibility Assessment of the Precursor Stage of a Landslide Threatening Haivan Railway Station, Vietnam[J]. Landslides, 2018, 15(2): 309-325.
    [71]
    Košt'􀅡k B. Deformation Effects in Rock Massifs and Their Long-Term Monitoring[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2006, 39(3): 249-258.
    [72]
    Cheng Y K, Shi Z W. Permanent Deformation and Temperature Monitoring of Subgrades Using Fiber Bragg Grating Sensing Technology[J]. Journal of Sensors, 2021, 2021: 8824058.
    [73]
    Bai M Z, Chen Y, Wang C L, et al. Radar Spectral Analysis and Evaluation of the Effect of Grouting Treatment in Karst Caves and Soil Caves[J]. Environmental Earth Sciences, 2018, 77(24): 795.
    [74]
    Kuo C P, Hsu C H, Wu C W, et al. Study on the Mechanism and Inspection Method of Railway Pumping[C]//Bearing Capacity of Roads, Railways and Airfields.Greece, Athens, 2017.
    [75]
    He Y, Li Y, Xu L. An Integrated Multisource and Multiscale Monitoring Technique for Assessing the Health Status of High-Speed Railway Subgrade[J]. Remote Sensing, 2024, 16(11): 1972.
  • Related Articles

    [1]LI Yongwei, XU Linrong, CHEN Yunhao, DENG Zhixing. Intergrated Space-Air-Train-Ground Muti-source Techniques for Early Detection of Subgrade Disasters and Service Status of Railway Subgrade[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1392-1406. DOI: 10.13203/j.whugis20230404
    [2]FU Hao, LI Weile, LU Huiyan, XU Qiang, DONG Xiujun, GUO Chen, XIE Yi, WANG Dong, LIU Gang, MA Zhigang. Early Detection and Monitoring of Potential Landslides in Danba County Based on the Space-Air-Ground Investigation System[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 734-746. DOI: 10.13203/j.whugis20220418
    [3]WANG Yi, LI Shengfu, MA Hongsheng, JIA Yang, JIANG Yuyang. Multi-method Early Identification and Route Optimization of Vulnerable Geological Environment Hazards on Mountainous Highways[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230214
    [4]LI Menghua, ZHANG Lu, DONG Jie, CAI Jiehua, LIAO Mingsheng. Detection and Monitoring of Potential Landslides Along Minjiang River Valley in Maoxian County, Sichuan Using Radar Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1529-1537. DOI: 10.13203/j.whugis20210367
    [5]DAI Cong, LI Weile, LU Huiyan, YANG Fan, XU Qiang, JIAN Ji. Active Landslides Detection in Zhouqu County, Gansu Province Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 994-1002. DOI: 10.13203/j.whugis20190457
    [6]CAI Jiehua, ZHANG Lu, DONG Jie, DONG Xiujun, LIAO Mingsheng, XU Qiang. Detection and Monitoring of Post-Earthquake Landslides in Jiuzhaigou Using Radar Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1707-1716. DOI: 10.13203/j.whugis20200263
    [7]XU Qiang. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659. DOI: 10.13203/j.whugis20200043
    [8]XU Qiang, DONG Xiujun, LI Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. DOI: 10.13203/j.whugis20190088
    [9]GE Daqing, DAI Keren, GUO Zhaocheng, LI Zhenhong. Early Identification of Serious Geological Hazards with Integrated Remote Sensing Technologies: Thoughts and Recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956. DOI: 10.13203/j.whugis20190094
    [10]ZHANG Lu, LIAO Mingsheng, DONG Jie, XU Qiang, GONG Jianya. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry-A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049. DOI: 10.13203/j.whugis20180181
  • Cited by

    Periodical cited type(4)

    1. 张露露,黄希芬. 联合均值和散度逆高斯回归模型的参数估计. 统计与决策. 2024(09): 49-54 .
    2. 董婷,符潍奇,邵攀,高利鹏,武昌东. 基于改进全连接条件随机场的SAR影像变化检测. 自然资源遥感. 2023(03): 134-144 .
    3. 王昶,张永生,王旭. 基于变分法与Markov随机场模糊局部信息聚类法的SAR影像变化检测. 武汉大学学报(信息科学版). 2021(06): 844-851 .
    4. 高新,靳国旺,熊新,徐娇. 融合差异图与高斯混合模型相结合的SAR图像变化检测. 测绘科学技术学报. 2020(01): 68-73 .

    Other cited types(6)

Catalog

    Article views (336) PDF downloads (127) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return