Citation: | LI Menghua, ZHANG Lu, DONG Jie, CAI Jiehua, LIAO Mingsheng. Detection and Monitoring of Potential Landslides Along Minjiang River Valley in Maoxian County, Sichuan Using Radar Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1529-1537. DOI: 10.13203/j.whugis20210367 |
[1] |
许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2 612-2 628 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
Xu Qiang, Li Weile, Dong Xiujun, et al. The Xinmocun Landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and Failure Mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2 612-2 628 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201711002.htm
|
[2] |
Fan X, Qiang X, Scaringi G, et al. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China [J]. Landslides, 2017, 14(3): 2 129-2 146 http://www.researchgate.net/profile/Gianvito_Scaringi/publication/320318336_Failure_mechanism_and_kinematics_of_the_deadly_June_24th_2017_Xinmo_landslide_Maoxian_Sichuan_China/links/59dd8de0a6fdcc276fa36b4f/Failure-mechanism-and-kinematics-of-the-deadly-June-24th-2017-Xinmo-landslide-Maoxian-Sichuan-China.pdf
|
[3] |
Dong J, Zhang L, Li M, et al. Measuring Precursory Movements of the Recent Xinmo Landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 Datasets[J]. Landslides, 2018, 15(1): 135-144 doi: 10.1007/s10346-017-0914-8
|
[4] |
李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策J]. 武汉大学学报·信息科学版, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098
Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098
|
[5] |
黄润秋. 岩石高边坡稳定性工程地质分析[M]. 北京: 科学出版社, 2012
Huang Runqiu. Engineering Geology for High Rock Slopes[M]. Beijing: Science Press, 2012
|
[6] |
郭华东. 雷达对地观测理论与应用[M]. 北京: 科学出版社, 2000
Guo Huadong. Theory and Application of Earth Observation by Radar[M]. Beijing: Science Press, 2000
|
[7] |
廖明生, 张路, 史绪国, 等. 滑坡变形雷达遥感监测方法与实践[M]. 北京: 科学出版社, 2017
Liao Mingsheng, Zhang Lu, Shi Xuguo, et al. Methodology and Practice of Landslide Deformation Monitoring with SAR Remote Sensing[M]. Beijing: Science Press, 2017
|
[8] |
刘国祥, 张波, 张瑞, 等. 联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测[J]. 武汉大学学报·信息科学版, 2019, 44(7): 980-995 doi: 10.13203/j.whugis20190077
Liu Guoxiang, Zhang Bo, Zhang Rui, et al. Monitoring Dynamics of Hailuogou Glacier and the Secondary Landslide Disasters Based on Combination of Satellite SAR and Ground-Based SAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 980-995 doi: 10.13203/j.whugis20190077
|
[9] |
许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报·信息科学版, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088
Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088
|
[10] |
Wasowski J, Bovenga F. Investigating Landslides and Unstable Slopes with Satellite Multi-temporal Interferometry: Current Issues and Future Perspectives[J]. Engineering Geology, 2014, 174: 103-138 doi: 10.1016/j.enggeo.2014.03.003
|
[11] |
廖明生, 董杰, 李梦华, 等. 雷达遥感滑坡隐患识别与形变监测[J]. 遥感学报, 2021, 25(1): 332-341 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101023.htm
Liao Mingsheng, Dong Jie, Li Menghua, et al. Radar Remote Sensing for Potential Landslides Detection and Deformation Monitoring[J]. National Remote Sensing Bulletin, 2021, 25(1): 332-341 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202101023.htm
|
[12] |
Zhao C, Lu Z, Zhang Q. et al. Large-Area Landslide Detection and Monitoring with ALOS/PAL-SAR Imagery Data over Northern California and Southern Oregon, USA[J]. Remote Sensing Environment, 2012, 124: 348-359 doi: 10.1016/j.rse.2012.05.025
|
[13] |
Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38 (5): 2 202-2 212 http://www.onacademic.com/detail/journal_1000035902697410_073b.html
|
[14] |
Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2 375-2 383 doi: 10.1109/TGRS.2002.803792
|
[15] |
Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3 460-3 470 doi: 10.1109/TGRS.2011.2124465
|
[16] |
廖明生, 王腾. 时间序列InSAR技术于应用[M]. 北京: 科学出版社, 2014
Liao Mingsheng, Wang Teng. Time Series InSAR Technology and Its Applications[M]. Beijing: Science Press, 2014
|
[17] |
Minh D, Hanssen R, Rocca F. Radar Interferometry: 20 Years of Development in Time Series Techniques and Future Perspectives[J]. Remote Sensing, 2020, 12(9): 1 364 doi: 10.3390/rs12091364
|
[18] |
Hooper A. A Multitemporal InSAR Method Incorporating both Persistent Scatterer and Small Baseline Approaches[J]. Geophysical Research Letter, 2008, 35(16): 1-5 http://140.115.21.141/Course/SeminarII/abstract2011_1/reference_abstracts/1027-1_abstract_A%20multi-temporal%20InSAR%20%20and%20small%20baseline%20approaches%201.pdf
|
[19] |
van Leijen F J. Persistent Scatterer Interferometry Based on Geodetic Estimation Theory[D]. Delft: Delft University of Technology, 2014
|
[20] |
Dong J, Zhang L, Tang M, et al. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distributed Scatterers: A Case Study of Jiaju Landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205: 180-198 http://www.sciencedirect.com/science/article/pii/S0034425717305710
|
[1] | LIU Xiaojie, ZHAO Chaoying, LI Bin, WANG Wenda, ZHANG Qin, GAO Yang, CHEN Liquan, WANG Baohang, HAO Junming, YANG Xiaohui. Identification and Dynamic Deformation Monitoring of Active Landslides in Jishishan Earthquake Area (Gansu, China) Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 297-312. DOI: 10.13203/j.whugis20240054 |
[2] | MA Shenglong, ZHOU Yu, SHEN Xuzhang. Analysis of Le Teil Earthquake in France and Its Correlation with Le Teil Quarry Extraction Using Sentinel-1 and Topographic Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1190-1200. DOI: 10.13203/j.whugis20210248 |
[3] | ZHAO Feng, ZHANG Leixin, WANG Teng, WANG Yunjia, YAN Shiyong, FAN Hongdong. Polarimetric Persistent Scatterer Interferometry for Urban Ground Deformation Monitoring with Sentinel-1 Dual Polarimetric Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1507-1514. DOI: 10.13203/j.whugis20210496 |
[4] | DAI Keren, ZHANG Lele, SONG Chuang, LI Zhenhong, ZHUO Guanchen, XU Qiang. Quantitative Analysis of Sentinel-1 Imagery Geometric Distortion and Suitability Along Qinghai-Tibet Plateau Traffic Corridor[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1450-1460. DOI: 10.13203/j.whugis20210130 |
[5] | WU Wenhao, LI Tao, LONG Sichun, ZHOU Zhiwei. Coregistration of Sentinel-1 TOPS Data for Interferometric Processing Using Real-Time Orbit[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 745-750. DOI: 10.13203/j.whugis20170098 |
[6] | ZHANG Xiaobo, ZHAO Xuesheng, GE Daqing, LIU Bin. Motion Characteristics of the South Inilchek Glacier Derived from New C-Band SAR Satellite[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 429-435. DOI: 10.13203/j.whugis20160538 |
[7] | LI Fei, WANG Zhenling, ZHANG Yu, ZHANG Shengkai, ZHU Tingting. Amery Ice Shelf Frontal Position Automatic Detection from Sentinel-1 SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2012-2022. DOI: 10.13203/j.whugis20180171 |
[8] | SHEN Zhaoqing, SHU Ning, TAO Jianbin. An Algorithm of Weighted “1 V m” SVM Multi-classification for Hyperspectral Remote Sensing Image with NPA[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1444-1447. |
[9] | WANG Kongzheng. Time-Varying Parameter PGM (1, 1) Deformation Prediction Model and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2005, 30(5): 456-459. |
[10] | Zhang Zuxun, Gu Tianxiang, Hu Zhigui. The Use of SODAMS for Generating DEM to Drive the Wild Avioplan OR-1 for Orthophoto Production[J]. Geomatics and Information Science of Wuhan University, 1986, 11(3): 20-29. |