XU Qiang. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659. DOI: 10.13203/j.whugis20200043
Citation: XU Qiang. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659. DOI: 10.13203/j.whugis20200043

Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards

Funds: 

the National Natural Science Foundation of China 41521002

Sichuan Science and Technology Program 2018SZ0339

Land and Resources Research Program of Sichuan Province KJ-2018-21

More Information
  • Author Bio:

    XU Qiang, PhD, professor, specializes in geological disaster prevention. E-mail: xq@cdut.edu.cn

  • Received Date: February 17, 2020
  • Published Date: November 18, 2020
  •   Objectives  In China, geohazards are wide-ranging. Traditional artificial investigations have found nearly three hundred thousand locations of potential geohazards. However, the recent occurred catastrophic geohazards are not within these determined locations. Widely identification of potential geohazards become one of the most important jobs for geohazard prevention and mitigation.
      Methods  We propose some suggestions to promote early identification for potential geohazards.
      Results  (1) Recently, various remote sensing techniques play an significant role in geohazard identification, but each technique has its limitation to recognize geohazards with different types and characteristics. Only integrated technologies, mutual complementation and verification, can effectively solve the problem. (2) Combination between traditional geological surveys and modern technologies (LiDAR, aerial and semi-aerial geophysical exploration, etc.) can improve the efficiency and accuracy for identification of the most difficult and unstable slops.(3) The deep machine learning is expected to realize the intelligent automatic identification of geohazards. Currently, it shows good performance in new geohazards with significant spectral and texture characteristics, while the accuracy of automatic identification for other types, such as ancient landslides and normal potential geohazards, is still not enough.
      Conclusions  More efforts are in urgent need for further research in related fields.
  • [1]
    许强, 李为乐, 董秀军, 等.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 36(11):17-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002

    Xu Qiang, Li Weile, Dong Xiujun, et al. Preliminary Study on the Characteristics and Genetic Mechanism of Xinmo Village Landslide in Diexi Town, Mao County, Sichuan Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 17-33 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002
    [2]
    Ouyang C, Zhao W, Xu Q, et al. Failure Mechanisms and Characteristics of the 2016 Catastrophic Rockslide at Su Village, Lishui, China[J]. Landslides, 2018, 15(7):1 391-1 400 doi: 10.1007/s10346-018-0985-1
    [3]
    童立强, 涂杰楠, 裴丽鑫, 等.雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J].工程地质学报, 2018, 26(6):1 552-1 561 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201806018

    Tong Liqiang, Tu Jienan, Pei Lixin, et al. Preliminary Discussion on the Frequently Debris Flow Events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River[J].Journal of Engineering Geology, 2018, 26(6):1 552-1 561 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201806018
    [4]
    许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J].工程地质学报, 2018, 26(6):1 534-1 551 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201806017

    Xu Qiang, Zheng Guang, Li Weile, et al. Analysis of Two Landslides in the Jinshajiang Baige-Depression-Blocking Event in October and November 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1 534-1 551 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201806017
    [5]
    许强.构建新"三查"体系, 创新地灾防治新机制[EB/OL].http://www.zgkyb.com/yw/20180312_48669.htm, 2018

    Xu Qiang. Constructing a New "Three-Check" System, Innovating New Mechanisms for Disaster Prevention and Control[EB/OL]. http://www.zgkyb.com/yw/20180312_48669.htm, 2018
    [6]
    葛大庆, 戴可人, 郭兆成, 等.重大地质灾害隐患早期识别中的思考与建议[J].武汉大学学报·信息科学版, 2019, 44(7): 949-956 doi: 10.13203/j.whugis20190094

    Ge Daqing, Dai Keren, Guo Zhaocheng, et al. Early Identification of Serious Geological Hazards with Integrated Remote Sensing Technologies: Thoughts and Recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956 doi: 10.13203/j.whugis20190094
    [7]
    陆会燕, 李为乐, 许强, 等.光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J].武汉大学学报·信息科学版, 2019, 44(9): 1 342-1 354 doi: 10.13203/j.whugis20190086

    Lu Huiyan, Li Weile, Xu Qiang, et al. Early Detection of Landslides in the Upstream and Downstream Area of the Baige Landslide, the Jinsha River Based on Optical Remote Sensing and InSAR Technologie[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1 342-1 354 doi: 10.13203/j.whugis20190086
    [8]
    许强, 董秀军, 李为乐.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报·信息科学版, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088

    Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088
    [9]
    Li Menghua, Zhang Lu, Ding Chao, et al. Retrieval of Historical Surface Displacements of the Baige Landslide from Time-Series SAR Observations for Retrospective Analysis of the Collapse Event[J]. Remote Sensing of Environment, 2020, 240:111695 doi: 10.1016/j.rse.2020.111695
    [10]
    Wasowskia J, Bovenga F. Investigating Landslides and Unstable Slopes with Satellite Multi-temporal Interferometry: Current Issues and Future Perspectives[J].Engineering Geology, 2014, 174: 103-138 doi: 10.1016/j.enggeo.2014.03.003
    [11]
    李振洪, 宋闯, 余琛, 等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报·信息科学版, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098
    [12]
    Qi Shengwen, Xu Qiang, Lan Hengxing, et al. Spatial Distribution Analysis of Landslides Triggered by 2008.5.12 Wenchuan Earthquake, China[J]. Engineering Geology, 2010, 116:95-108 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85bff191bab70d0705acef9f8c3f43c0
    [13]
    李麒崙, 张万昌, 易亚宁.地震滑坡信息提取方法研究:以2017年九寨沟地震为例[J].中国科学院大学学报, 2020, 37(1):93-102 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZKYB202001010

    Li Qilun, Zhang Wanchang, Yi Yaning. Study of Earthquake Landslide Information Retrieval Algorithm: Taking the Jiuzaigou Earthquake as an Example[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1): 93-102 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZKYB202001010
    [14]
    Ji Shunping, Yu Dawen, Shen Chaoyong, et al. Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks[J]. Landslides, 2020, DOI: 10.1007/s10346-020-01353-2
    [15]
    Prakash N, Manconi A, Loew S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models[J].Remote Sensing, 2020, 12(3):346 doi: 10.3390/rs12030346
  • Related Articles

    [1]ZHOU Fangbin, XIAO Zhiwen, LIU Xuejun, MA Guowei, ZHANG Shanshan. Mountain Peak Extraction of Grid DEM Based on Aspect Distribution Feature[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 419-425. DOI: 10.13203/j.whugis20210479
    [2]BIAN Weiwei, WU Jicang, ZHANG Lei, GAO Yu. Temporal and Spatial Statistical Analysis of Strong Earthquakes and Spatial Distribution Characteristics of InSAR Coseismic Deformation Field[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 875-886. DOI: 10.13203/j.whugis20220176
    [3]WANG Haiqi, CHEN Ran, WEI Shiqing, GUI Li, FEI Tao. Mining Emotional Geography Features Based on Chinese Weibo Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 699-708. DOI: 10.13203/j.whugis20180138
    [4]YANG Jing, CHENG Changxiu, LI Xiaolan, CHEN Chi. A Similarity Evaluation Method on Spatial Patterns of Network Structures: A Case Study About Beijing Traffic-network Backbones from 1938 to 2014[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1593-1598. DOI: 10.13203/j.whugis20140569
    [5]YANG Xiguang, HUANG Haijun, LIU Yanxia, YAN Liwen. Direction Characteristic of Radiation Energy and Transmission Characteristic of Waters at Water-air Surface[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 1003-1008.
    [6]GUO Yangjie, HONG Song, ZHUANG Yanhua, FENG Nan. Temporal Variation and Spatial Distribution of Atmospheric Aerosols over Hubei Province[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1381-1385.
    [7]SUN Jianguo, AI Tinghua, WANG Pei, ZHAO Chuanyan. Assessing Vegetation Degradation Based on NDVI-climate Variables Feature Space[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 573-576.
    [8]RUAN Zhimin, SUN Zhenbing. Spatial Information Publication Based on Oracle Spatial and SVG[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 161-164.
    [9]LU Anmin, LI Chengming, LIN Zongjian, JIN Yimin. Spatial Distribution of Statistical Population Data[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3): 301-305.
    [10]LU Yi, ZHAI Jingsheng, DU Jinghai, LI Shujun. Recognition,Measurement and Generalization for Point Cluster Features in Digital Nautical Chart[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 133-139.
  • Cited by

    Periodical cited type(13)

    1. 戴佩玉,李世忠,季顺平,任妮. 一种基于域自适应泛化增强的云检测方法. 武汉大学学报(信息科学版). 2025(01): 110-119 .
    2. 徐梓川,龚晓峰. 基于语义指导和自适应卷积的遥感云检测算法. 电子测量技术. 2024(01): 136-143 .
    3. 李长萍,于大海,郭豪,李杰,胡滨. 复杂场景下多重损失的步态识别系统的实现. 软件. 2023(05): 11-18 .
    4. 刘广进,王光辉,毕卫华,刘慧杰,杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法. 自然资源遥感. 2022(02): 88-96 .
    5. 黄学飞,梁昌远,郭杰. 融合注意力机制的LandSat8遥感影像云检测算法. 电脑知识与技术. 2022(23): 63-65 .
    6. 黄宇,潘励. 基于显著性图像与纹理特征的遥感影像云检测. 测绘地理信息. 2021(02): 16-19 .
    7. 王亚利,都伟冰,王双亭. 高斯混合模型自动阈值法遥感冰川信息提取. 遥感学报. 2021(07): 1434-1444 .
    8. 王明,刘正佳,陈元琰. 基于Sentinel-2波段/产品的图像云检测效果对比研究. 遥感技术与应用. 2020(05): 1167-1177 .
    9. 刘云峰,杨珍,韩骁,付俊. 国产高分辨率卫星影像云检测方法分析. 测绘通报. 2020(11): 66-70 .
    10. 徐冬宇,厉小润,赵辽英,舒锐,唐琪佳. 基于光谱分析和动态分形维数的高光谱遥感图像云检测. 激光与光电子学进展. 2019(10): 93-101 .
    11. 余长慧,于海威,张文,孟令奎. 神经网络支持下的Sentinel-2卫星影像自动云检测. 测绘通报. 2019(08): 39-43 .
    12. 董志鹏,王密,李德仁,王艳丽,张致齐. 利用对象光谱与纹理实现高分辨率遥感影像云检测方法. 测绘学报. 2018(07): 996-1006 .
    13. 张波,刘鹤飞,王坤. 异分布混合模型及其参数的贝叶斯估计. 曲靖师范学院学报. 2018(06): 1-4 .

    Other cited types(14)

Catalog

    Article views (3368) PDF downloads (823) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return