SU Yong, LI Jiancheng, XU Xinyu, WANG Changqing, YU Biao, LI Qiong, GU Yanchao. Progress in Point-Mass Modeling Approach for Surface Mass Distribution Derived from Gravity Satellite Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1503-1516. DOI: 10.13203/j.whugis20230294
Citation: SU Yong, LI Jiancheng, XU Xinyu, WANG Changqing, YU Biao, LI Qiong, GU Yanchao. Progress in Point-Mass Modeling Approach for Surface Mass Distribution Derived from Gravity Satellite Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1503-1516. DOI: 10.13203/j.whugis20230294

Progress in Point-Mass Modeling Approach for Surface Mass Distribution Derived from Gravity Satellite Data

More Information
  • Received Date: November 20, 2023
  • Available Online: November 20, 2023
  • The successful implementation of multi-generation gravity satellite missions has made significant progress in using gravity satellite observation data to monitor global mass changes. This has improved our understanding of large-scale material migration, global environmental changes in the Earth system, and facilitated research on critical environmental issues such as global sea level change monitoring, glacier melting, and groundwater extraction. Limitations in the accuracy and resolution of satellite instruments, along with factors such as modeling errors, result in global mass changes calculated using gravity satellite data being affected by noise patterns in the form of south-north stripes and signal leakage. While commonly used filtering and smoothing methods effectively mitigate the impact of south-north stripes noise, they exacerbate signal leakage problems. To address these issues and enhance the spatiotemporal resolution and accuracy of surface mass changes in the calculation of gravity satellite data, numerous scholars have developed a point-mass modeling approach based on Newton's law of universal gravitation. These methods establish a direct relationship between surface mass changes and perturbed motion of satellites, employing constraint matrices to tackle strip errors and ill-posed problems arising from downward continuation. This article examines the research progress of the point-mass modeling approach, provides a comprehensive overview of the fundamental theories and various methods employed, analyzes different strategies and characteristics of constraint matrices, and provides a concise summary of the post-processing methods associated with this approach. The comprehensive analysis presented in this article is intended to serve as a valuable reference for the future development and research of the point-mass modeling approach.

  • [1]
    Tapley B D, Bettadpur S, Watkins M, et al. The Gravity Recovery and Climate Experiment: Mission Overview and Early Results[J]. Geophysical Research Letters, 2004, 31(9): L09607.
    [2]
    Wahr J, Swenson S, Zlotnicki V, et al. Time-Variable Gravity from GRACE: First Results[J]. Geophysical Research Letters, 2004, 31(11): L11501.
    [3]
    Flechtner F, Reigber C, Rummel R, et al. Satellite Gravimetry: A Review of Its Realization[J]. Surveys in Geophysics, 2021, 42(5): 1029-1074.
    [4]
    冉将军, 闫政文, 吴云龙, 等. 下一代重力卫星任务研究概述与未来展望[J]. 武汉大学学报(信息科学版), 2023, 48(6): 841-857.

    Ran Jiangjun, Yan Zhengwen, Wu Yunlong, et al. Research Status and Future Perspectives in Next Generation Gravity Mission[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 841-857.
    [5]
    Jäggi A, Dahle C, Arnold D, et al. Swarm Kinematic Orbits and Gravity Fields from 18 Months of GPS Data[J]. Advances in Space Research, 2016, 57(1): 218-233.
    [6]
    周浩, 罗志才, 周泽兵, 等. 基于天琴一号观测数据反演地球重力场模型[J]. 华中科技大学学报(自然科学版), 2022, 50(9): 117-125.

    Zhou Hao, Luo Zhicai, Zhou Zebing, et al. Earth’s Gravity Field Determination Based on Tianqin-1 Observations[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(9): 117-125.
    [7]
    Wahr J, Molenaar M, Bryan F. Time Variability of the Earth’s Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229.
    [8]
    Swenson S, Wahr J. Post-Processing Removal of Correlated Errors in GRACE Data[J]. Geophysical Research Letters, 2006, 33(8): L08402.
    [9]
    郑秋月, 陈石. 应用GRACE卫星重力数据计算陆地水变化的相关进展评述[J]. 地球物理学进展, 2015, 30(6): 2603-2615.

    Zheng Qiuyue, Chen Shi. Review on the Recent Developments of Terrestrial Water Storage Variations Using GRACE Satellite-Based Datum[J]. Progress in Geophysics, 2015, 30(6): 2603-2615.
    [10]
    Seo K W, Wilson C R, Chen J L, et al. GRACE’s Spatial Aliasing Error[J]. Geophysical Journal International, 2008, 172(1): 41-48.
    [11]
    Baur O, Kuhn M, Featherstone W E. GRACE-Derived Ice-Mass Variations over Greenland by Accounting for Leakage Effects[J]. Journal of Geophysical Research (Solid Earth), 2009, 114(B6): B06407.
    [12]
    Chen J L, Wilson C R, Li J, et al. Reducing Leakage Error in GRACE-Observed Long-Term Ice Mass Change: A Case Study in West Antarctica[J]. Journal of Geodesy, 2015, 89(9): 925-940.
    [13]
    Landerer F W, Swenson S C. Accuracy of Scaled GRACE Terrestrial Water Storage Estimates[J]. Water Resources Research, 2012, 48(4): W04531.
    [14]
    Long D, Yang Y T, Wada Y, et al. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China’s Yangtze River Basin[J]. Remote Sensing of Environment, 2015, 168: 177-193.
    [15]
    吴云龙, 李辉, 邹正波, 等. 基于Forward-Modeling方法的黑河流域水储量变化特征研究[J]. 地球物理学报, 2015, 58(10): 3507-3516.

    Wu Yunlong, Li Hui, Zou Zhengbo, et al. Investigation of Water Storage Variation in the Heihe River Using the Forward-Modeling Method[J]. Chinese Journal of Geophysics, 2015, 58(10): 3507-3516.
    [16]
    Chen J L, Cazenave A, Dahle C, et al. Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry[J]. Surveys in Geophysics, 2022, 43(1): 305-345.
    [17]
    Muller P M, Sjogren W L. Mascons: Lunar Mass Concentrations[J]. Science, 1968, 161(3842): 680-684.
    [18]
    Antoni M. A Review of Different Mascon Approaches for Regional Gravity Field Modelling Since 1968[J]. History of Geo⁃ and Space Sciences, 2022, 13(2): 205-217.
    [19]
    Rowlands D D, Luthcke S B, Klosko S M, et al. Resolving Mass Flux at High Spatial and Temporal Resolution Using GRACE Intersatellite Measurements[J]. Geophysical Research Letters, 2005, 32(4): L04310.
    [20]
    Rowlands D D, Luthcke S B, McCarthy J J, et al. Global Mass Flux Solutions from GRACE: A Comparison of Parameter Estimation Strategies—Mass Concentrations Versus Stokes Coefficients[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B1): B01403.
    [21]
    Watkins M M, Wiese D N, Yuan D N, et al. Improved Methods for Observing Earth’s Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2648-2671.
    [22]
    Abedini A, Keller W, Amiri-Simkooei A. Estimation of Surface Density Changes Using a Mascon Method in GRACE-Like Missions[J]. Journal of Earth System Science, 2021, 130(1): 26.
    [23]
    Abedini A, Keller W, Amiri-Simkooei A R. On the Performance of Equiangular Mascon Solution in GRACE-like Missions[J]. Annals of Geophysics, 2021, 64(2): GD219.
    [24]
    Luthcke S B, Sabaka T J, Loomis B D, et al. Antarctica, Greenland and Gulf of Alaska Land-Ice Evolution from an Iterated GRACE Global Mascon Solution[J]. Journal of Glaciology, 2013, 59(216): 613-631.
    [25]
    Klosko S, Rowlands D, Luthcke S, et al. Evaluation and Validation of Mascon Recovery Using GRACE KBRR Data with Independent Mass Flux Estimates in the Mississippi Basin[J]. Journal of Geodesy, 2009, 83(9): 817-827.
    [26]
    Han S C, Shum C K, Braun A. High-Resolution Continental Water Storage Recovery from Low-Low Satellite-to-Satellite Tracking[J]. Journal of Geodynamics, 2005, 39(1): 11-28.
    [27]
    Han S C, Shum C K, Jekeli C, et al. Improved Estimation of Terrestrial Water Storage Changes from GRACE[J]. Geophysical Research Letters, 2005, 32(7): L07302.
    [28]
    Tangdamrongsub N, Hwang C, Shum C K, et al. Regional Surface Mass Anomalies from GRACE KBR Measurements: Application of L-Curve Regularization Anda Priori Hydrological Knowledge[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B11): B11406.
    [29]
    Baur O, Sneeuw N. Assessing Greenland Ice Mass Loss by Means of Point-Mass Modeling: A Viable Methodology[J]. Journal of Geodesy, 2011, 85(9): 607-615.
    [30]
    Baur O. Greenland Mass Variation from Time-Variable Gravity in the Absence of GRACE[J]. Geophysical Research Letters, 2013, 40(16): 4289-4293.
    [31]
    苏勇, 于冰, 游为, 等. 基于重力卫星数据监测地表质量变化的三维点质量模型法[J]. 地球物理学报, 2017, 60(1): 50-60.

    Su Yong, Yu Bing, You Wei, et al. Surface Mass Distribution from Gravity Satellite Observations by Using Three-Dimensional Point-Mass Modeling Approach[J]. Chinese Journal of Geophysics, 2017, 60(1): 50-60.
    [32]
    苏勇, 郑文磊, 余彪, 等. 反演地表质量变化的附有空间约束的三维加速度点质量模型法[J]. 地球物理学报, 2019, 62(2): 508-519.

    Su Yong, Zheng Wenlei, Yu Biao, et al. Surface Mass Distribution Derived from Three-Dimensional Acceleration Point-Mass Modeling Approach with Spatial Constraint Methods[J]. Chinese Journal of Geophysics, 2019, 62(2): 508-519.
    [33]
    郭飞霄, 孙中苗, 赵俊, 等. 附加空间约束的径向点质量模型方法反演区域地表质量变化[J]. 测绘学报, 2018, 47(5): 592-599.

    Guo Feixiao, Sun Zhongmiao, Zhao Jun, et al. Regional Ground Surface Mass Variations Inversed by Radial Point-Mass Model Method with Spatial Constraints[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5): 592-599.
    [34]
    Zhong B, Li Q, Chen J L, et al. Improved Estimation of Regional Surface Mass Variations from GRACE Intersatellite Geopotential Differences Using a Priori Constraints[J]. Remote Sensing, 2020, 12(16): 2553.
    [35]
    尹恒, 游为, 范东明, 等. 反演地表质量变化的附有方差约束的径向点质量方法[J]. 地球物理学报, 2022, 65(7): 2464-2483.

    Yin Heng, You Wei, Fan Dongming, et al. Variance Constraint Radial Point-Mass Method for Inversion of Earth Surface Mass Variation[J]. Chinese Journal of Geophysics, 2022, 65(7): 2464-2483.
    [36]
    Ramillien G, Biancale R, Gratton S, et al. GRACE-Derived Surface Water Mass Anomalies by Energy Integral Approach: Application to Continental Hydrology[J]. Journal of Geodesy, 2011, 85(6): 313-328.
    [37]
    Chao B F, Gross R S. Changes in the Earth’s Rotation and Low-Degree Gravitational Field Induced by Earthquakes[J]. Geophysical Journal International, 1987, 91(3): 569-596.
    [38]
    Luthcke S B, Arendt A A, Rowlands D D, et al. Recent Glacier Mass Changes in the Gulf of Alaska Region from GRACE Mascon Solutions[J]. Journal of Glaciology, 2008, 54(188): 767-777.
    [39]
    Lemoine F G, Luthcke S B, Rowlands D D, et al. The Use of Mascons to Resolve Time-Variable Gravity from GRACE[M]// Dynamic Planet. Berlin, Heidelberg: Springer, 2007: 231-236.
    [40]
    Krogh P E, Andersen O B, Michailovsky C I B, et al. Evaluating Terrestrial Water Storage Variations from Regionally Constrained GRACE Mascon Data and Hydrological Models over Southern Africa-Preliminary Results[J]. International Journal of Remote Sensing, 2010, 31(14): 3899-3912.
    [41]
    Sabaka T J, Rowlands D D, Luthcke S B, et al. Improving Global Mass Flux Solutions from Gravity Recovery and Climate Experiment (GRACE) Through Forward Modeling and Continuous Time Correlation[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B11): B11403.
    [42]
    Awange J L, Fleming K M, Kuhn M, et al. On the Suitability of the 4°×4° GRACE Mascon Solutions for Remote Sensing Australian Hydrology[J]. Remote Sensing of Environment, 2011, 115(3): 864-875.
    [43]
    Andrews S B, Moore P, King M A. Mass Change from GRACE: A Simulated Comparison of Level-1B Analysis Techniques[J]. Geophysical Journal International, 2015, 200(1): 503-518.
    [44]
    Yang X C, Tian S Y, Feng W, et al. Spatio-Temporal Evaluation of Water Storage Trends from Hydrological Models over Australia Using GRACE Mascon Solutions[J]. Remote Sensing, 2020, 12(21): 3578.
    [45]
    郭飞霄, 肖云, 汪菲菲. 利用GRACE星间距离变率数据反演地球表层质量变化的Mascon方法[J]. 地球物理学进展, 2014, 29(6): 2494-2497.

    Guo Feixiao, Xiao Yun, Wang Feifei. Mascon Inversion Method of Earth Surface Mass Anomaly Using GRACE Range Rate Data[J]. Progress in Geophysics, 2014, 29(6): 2494-2497.
    [46]
    郭飞霄, 肖云, 汪菲菲, 等. 利用GRACE卫星Level-1B数据反演陆地水储量变化的方法研究[J]. 测绘工程, 2015, 24(6): 18-22.

    Guo Feixiao, Xiao Yun, Wang Feifei, et al. A Study of the Methods of Recovering Continental Water Storage Variation Using GRACE Level-1B Data[J]. Engineering of Surveying and Mapping, 2015, 24(6): 18-22.
    [47]
    郭飞霄, 孙中苗, 任飞龙, 等. 不同Mascon模型解比较分析[J]. 大地测量与地球动力学, 2019, 39(10): 1022-1026.

    Guo Feixiao, Sun Zhongmiao, Ren Feilong, et al. Comparison and Analysis of Different Mascon Model Results[J]. Journal of Geodesy and Geodynamics, 2019, 39(10): 1022-1026.
    [48]
    苏勇, 魏伟, 李琼, 等. 利用三维加速度点质量模型法监测2010年中国西南干旱[J]. 大地测量与地球动力学, 2022, 42(4): 403-409.

    Su Yong, Wei Wei, Li Qiong, et al. Drought Monitoring in Southwest China in 2010 Using Three-Dimensional Acceleration Point-Mass Modeling Approach[J]. Journal of Geodesy and Geodynamics, 2022, 42(4): 403-409.
    [49]
    苏勇, 魏伟, 李琼, 等. 联合GRACE、GRACE-FO重力卫星数据监测华北地区水储量变化[J]. 地球物理学进展, 2022, 37(5): 1854-1862.

    Su Yong, Wei Wei, Li Qiong, et al. Monitoring the Variation of Terrestrial Water Storage in North China Using GRACE and GRACE-FO Gravity Satellite Data[J]. Progress in Geophysics, 2022, 37(5): 1854-1862.
    [50]
    魏伟, 苏勇, 郑文磊, 等. 利用三维加速度点质量模型法解算华北地区陆地水储量变化[J]. 武汉大学学报(信息科学版), 2022, 47(4): 551-560.

    Wei Wei, Su Yong, Zheng Wenlei, et al. Monitoring the Variation of Terrestrial Water Storage in North China by Three-Dimensional Acceleration Point-Mass Modeling Approach[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 551-560.
    [51]
    Pail R. Synthetic Global Gravity Model for Planetary Bodies and Applications in Satellite Gravity Gradiometry[D]. Graz: Technical University Graz, 1999.
    [52]
    Bjerhammar A. On the Energy Integral for Satellites[J]. Tellus, 1969, 21(1): 1-9.
    [53]
    Jekeli C. The Determination of Gravitational Potential Differences from Satellite-to-Satellite Tracking[J]. Celestial Mechanics and Dynamical Astronomy, 1999, 75(2): 85-101.
    [54]
    Shang K, Guo J Y, Shum C K, et al. GRACE Time-Variable Gravity Field Recovery Using an Improved Energy Balance Approach[J]. Geophysical Journal International, 2015, 203(3): 1773-1786.
    [55]
    Zhong B, Li Q, Li X P, et al. Basin-Scale Terrestrial Water Storage Changes Inferred from GRACE-Based Geopotential Differences: A Case Study of the Yangtze River Basin, China[J]. Geophysical Journal International, 2023, 233(2): 1318-1338.
    [56]
    Zhong B, Li X P, Chen J L, et al. WHU-GRACE-GPD01s: A Series of Constrained Monthly Gravity Field Solutions Derived from GRACE-Based Geopotential Differences[J]. Earth and Space Science, 2023, 10(4): e2022EA002699.
    [57]
    Sørensen L S, Jarosch A H, Aðalgeirsdóttir G, et al. The Effect of Signal Leakage and Glacial Isostatic Rebound on GRACE-Derived Ice Mass Changes in Iceland[J]. Geophysical Journal International, 2017, 209(1): 226-233.
    [58]
    Wang W, Shen Y Z, Chen Q J, et al. One-Degree Resolution Mascon Solution over Antarctic Derived from GRACE Level-2 Data[J]. Frontiers in Earth Science, 2023, 11: 1129628.
    [59]
    Ilk K H. Ein Beitrag Zur Dynamik Ausgedehnter Körper: Gravitation Swechsel Wirkung[J]. Deutsche Geodaetische Kommission Bayer Akad Wiss, 1983, 288: 11-17.
    [60]
    Mayer-Gürr T. Gravitational Field Determination from the Analysis of Short Orbital Arcs Using the Example of the Satellite Missions CHAMP and GRACE [D]. Bonn: University of Bonn, 2006.
    [61]
    Kusche J, Klees R. Regularization of Gravity Field Estimation from Satellite Gravity Gradients[J]. Journal of Geodesy, 2002, 76(6): 359-368.
    [62]
    Loomis B D, Luthcke S B, Sabaka T J. Regularization and Error Characterization of GRACE Mascons[J]. Journal of Geodesy, 2019, 93(9): 1381-1398.
    [63]
    Hansen P C. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve[J]. SIAM Review, 1992, 34(4): 561-580.
    [64]
    Ditmar P, Kusche J, Klees R. Computation of Spherical Harmonic Coefficients from Gravity Gradiometry Data to be Acquired by the GOCE Satellite: Regularization Issues[J]. Journal of Geodesy, 2003, 77(7): 465-477.
    [65]
    Xu P L, Shen Y Z, Fukuda Y, et al. Variance Component Estimation in Linear Inverse Ill-Posed Models[J]. Journal of Geodesy, 2006, 80(2): 69-81.
    [66]
    Shen Y Z, Xu P L, Li B F. Bias-Corrected Regularized Solution to Inverse Ill-posed Models[J]. Journal of Geodesy, 2012, 86(8): 597-608.
    [67]
    Swenson S C, Wahr J M. Estimating Signal Loss in Regularized GRACE Gravity Field Solutions[J]. Geophysical Journal International, 2011, 185(2): 693-702.
    [68]
    Zhong B, Tan J T, Li Q, et al. Simulation Analysis of Regional Surface Mass Anomalies Inversion Based on Different Types of Constraints[J]. Geodesy and Geodynamics, 2021, 12(4): 298-307.
    [69]
    詹金刚, 王勇, 史红岭, 等. 应用平滑先验信息方法移除GRACE数据中相关误差[J]. 地球物理学报, 2015, 58(4): 1135-1144.

    Zhan Jingang, Wang Yong, Shi Hongling, et al. Removing Correlative Errors in GRACE Data by the Smoothness Priors Method[J]. Chinese Journal of Geophysics, 2015, 58(4): 1135-1144.
    [70]
    Chen T Y, Shen Y Z, Chen Q J. Mass Flux Solution in the Tibetan Plateau Using Mascon Modeling[J]. Remote Sensing, 2016, 8(5): 439.
    [71]
    郭飞霄, 苗岳旺, 肖云, 等. 采用点质量模型方法反演中国大陆及周边地区陆地水储量变化[J]. 武汉大学学报(信息科学版), 2017, 42(7): 1002-1007.

    Guo Feixiao, Miao Yuewang, Xiao Yun, et al. Recovery Water Storage Variation in China and Its Adjacent Area by Method of Point-Mass Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 1002-1007.
    [72]
    冯伟, 王长青, 穆大鹏, 等. 基于GRACE的空间约束方法监测华北平原地下水储量变化[J]. 地球物理学报, 2017, 60(5): 1630-1642.

    Feng Wei, Wang Changqing, Mu Dapeng, et al. Groundwater Storage Variations in the North China Plain from GRACE with Spatial Constraints[J]. Chinese Journal of Geophysics, 2017, 60(5): 1630-1642.
    [73]
    Ran J J, Ditmar P, Liu L, et al. Analysis and Mitigation of Biases in Greenland Ice Sheet Mass Balance Trend Estimates from GRACE Mascon Products[J]. Journal of Geophysical Research (Solid Earth), 2021, 126(7): e2020JB020880.
    [74]
    Luthcke S B, Rowlands D D, Lemoine F G, et al. Monthly Spherical Harmonic Gravity Field Solutions Determined from GRACE Inter-Satellite Range-Rate Data Alone[J]. Geophysical Research Letters, 2006, 33(2): L02402.
    [75]
    Chen Y Q. Recovery of Terrestrial Water Storage Change from Low-Low Satellite-to-Satellite Tracking[D]. Columbus: The Ohio State University, 2007.
    [76]
    Ramillien G L, Seoane L, Frappart F, et al. Constrained Regional Recovery of Continental Water Mass Time-Variations from GRACE-Based Geopotential Anomalies over South America[J]. Surveys in Geophysics, 2012, 33(5): 887-905.
    [77]
    Save H, Bettadpur S, Tapley B D. Reducing Errors in the GRACE Gravity Solutions Using Regularization[J]. Journal of Geodesy, 2012, 86(9): 695-711.
    [78]
    Save H, Bettadpur S, Tapley B D. High-Resolution CSR GRACE RL05 Mascons[J]. Journal of Geophysical Research (Solid Earth), 2016, 121(10): 7547-7569.
    [79]
    Eicker A. Gravity Field Refinement by Radial Basis Functions from In-Situ Satellite Data [D]. Bonn: University of Bonn, 2008.
    [80]
    Schrama E J O, Wouters B, Rietbroek R. A Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from GRACE Data[J]. Journal of Geophysical Research (Solid Earth), 2014, 119(7): 6048-6066.
    [81]
    Save H. CSR GRACE and GRACE-FO RL06 Mascon Solutions v02[EB/OL]. [2024-06-30]. https://www2.csr.utexas.edu/grace/RL06_mascons.html.
    [82]
    Loomis B D, Felikson D, Sabaka T J, et al. High-Spatial-Resolution Mass Rates from GRACE and GRACE-FO: Global and Ice Sheet Analyses[J]. Journal of Geophysical Research (Solid Earth), 2021, 126(12): e2021JB023024.
    [83]
    Ran J, Ditmar P, Klees R, et al. Statistically Optimal Estimation of Greenland Ice Sheet Mass Variations from GRACE Monthly Solutions Using an Improved Mascon Approach[J]. Journal of Geodesy, 2018, 92(3): 299-319.
    [84]
    Ran J J, Ditmar P, Klees R. Optimal Mascon Geometry in Estimating Mass Anomalies Within Greenland from GRACE[J]. Geophysical Journal International, 2018, 214(3): 2133-2150.
    [85]
    邹贤才, 金涛勇, 朱广彬. 卫星跟踪卫星技术反演局部地表物质迁移的Mascon方法研究[J]. 地球物理学报, 2016, 59(12): 4623-4632.

    Zou Xiancai, Jin Taoyong, Zhu Guangbin. Research on the Mascon Method for the Determination of Local Surface Mass Flux with Satellite-Satellite Tracking Technique[J]. Chinese Journal of Geophysics, 2016, 59(12): 4623-4632.
    [86]
    Swenson S, Chambers D, Wahr J. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8): B08410.
    [87]
    Cheng M K, Tapley B D, Ries J C. Deceleration in the Earth’s Oblateness[J]. Journal of Geophysical Research (Solid Earth), 2013, 118(2): 740-747.
    [88]
    张岚, 孙文科. 重力卫星GRACE Mascon产品的应用研究进展与展望[J]. 地球与行星物理论评, 2022, 53(1): 35-52.

    Zhang Lan, Sun Wenke. Progress and Prospect of GRACE Mascon Product and Its Application[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(1): 35-52.
  • Related Articles

    [1]LIU Xiaojie, ZHAO Chaoying, LI Bin, WANG Wenda, ZHANG Qin, GAO Yang, CHEN Liquan, WANG Baohang, HAO Junming, YANG Xiaohui. Identification and Dynamic Deformation Monitoring of Active Landslides in Jishishan Earthquake Area (Gansu, China) Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 297-312. DOI: 10.13203/j.whugis20240054
    [2]LIU Bin, ZHANG Li, GE Daqing, LI Man, ZHOU Xiaolong, GUO Zhaocheng, SHI Pengqing, ZHANG Ling, JIN Dingjian, WAN Xiangxing, WANG Yu, WANG Yan. Application of InSAR Monitoring Large Deformation of Landslides Using Lutan-1 Constellation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1753-1762. DOI: 10.13203/j.whugis20230478
    [3]YANG Chengsheng, LI Xiaoyang, ZHANG Qin, WEI Yunjie, LI Zufeng, ZHU Sainan. Monitoring and Analysis of Post-Earthquake Landslide in Sindhupalchowk District, Nepal Based on InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1684-1696. DOI: 10.13203/j.whugis20230258
    [4]YANG Mengshi, LIAO Mingsheng, CHANG Ling, HANSSEN Ramon F.. Interpretation of Multi-epoch InSAR Deformation for Urban Scenes: A Problem Analysis and Literature Review[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1643-1660. DOI: 10.13203/j.whugis20230289
    [5]LI Menghua, ZHANG Lu, DONG Jie, CAI Jiehua, LIAO Mingsheng. Detection and Monitoring of Potential Landslides Along Minjiang River Valley in Maoxian County, Sichuan Using Radar Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1529-1537. DOI: 10.13203/j.whugis20210367
    [6]ZHANG Shuangcheng, SI Jinzhao, XU Yongfu, NIU Yufen, FAN Qianyou, ZHU Wu, AN Peng, GUO Yanhui. Time-Series InSAR for Stability Monitoring of Ankang Airport with Expansive Soil[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1519-1528. DOI: 10.13203/j.whugis20210223
    [7]SHI Xuguo, ZHANG Lu, XU Qiang, ZHAO Kuanyao, DONG Jie, JIANG Houjun, LIAO Mingsheng. Monitoring Slope Displacements of Loess Terrace Using Time Series InSAR Analysis Technique[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1027-1034. DOI: 10.13203/j.whugis20190056
    [8]ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, PENG Jianbing, XU Qiang. Research on Loess Landslide Identification, Monitoring and Failure Mode with InSAR Technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007. DOI: 10.13203/j.whugis20190072
    [9]XU Xiaolan, LI Fei. Application of InSAR and DInSAR to Zhongba Earthquake[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 727-729.
    [10]LI Zhenhong, LIU Jingnan, XU Caijun. Error Analysis in InSAR Data Processing[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 72-76.

Catalog

    Article views (521) PDF downloads (159) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return