Citation: | YANG Chengsheng, LI Xiaoyang, ZHANG Qin, WEI Yunjie, LI Zufeng, ZHU Sainan. Monitoring and Analysis of Post-Earthquake Landslide in Sindhupalchowk District, Nepal Based on InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1684-1696. DOI: 10.13203/j.whugis20230258 |
In 2015, the Mw 7.8 earthquake in Nepal caused landslides and seriously impacted Nepal and its surrounding areas.
In this paper, the Sindhupalchowk area, which is close to the epicenter of the earthquake, is selected as the study area. First, based on the L-band ALOS-2 and C-band Sentinel-1A synthetic aperture radar data, the detection and identification of post-earthquake landslides are carried out by using stacking-InSAR(interferometric synthetic aperture radar) technology. Second, the two-dimensional time series deformation characteristics of a typical landslide are obtained by combining the ascending and descending orbit data and multi-dimensional small baseline subset-InSAR technology.
Combined with optical images, 14 hidden points of landslide are delineated. The main deformation of the typical landslide occurs in the horizontal east-west direction, and the maximum deformation rate is -69 mm/a.
By analyzing the trend and periodic term deformation signals in time series of the typical landslide, it is found that the earthquake has a significant acceleration effect on the landslide movement, and the increase of rainfall makes the landslide displacement show a periodic change from August to November every year. This paper can provide a reference for post-earthquake landslide monitoring research.
[1] |
Feng G C, Li Z W, Shan X J, et al. Geodetic Model of the 2015 April 25 Mw 7.8 Gorkha Nepal Earthquake and Mw 7.3 Aftershock Estimated from InSAR and GPS Data[J]. Geophysical Journal International, 2015, 203(2): 896-900. doi: 10.1093/gji/ggv335
|
[2] |
Roback K, Clark M K, West A J, et al. The Size, Distribution, and Mobility of Landslides Caused by the 2015 Mw 7.8 Gorkha Earthquake, Nepal[J]. Geomorphology, 2018, 301: 121-138. doi: 10.1016/j.geomorph.2017.01.030
|
[3] |
武新宁, 易俊梅, 周淑丽, 等. 尼泊尔Ms 8.1级地震活动构造及次生地质灾害研究[J]. 水文地质工程地质, 2017, 44(4): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201704021.htm
Wu Xinning, Yi Junmei, Zhou Shuli, et al. A Study on the Active Faults Structures and Geohazards Triggered by the Ms 8.1 Earthquake in Nepal[J]. Hydrogeology & Engineering Geology, 2017, 44(4): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201704021.htm
|
[4] |
Rosser N, Densmore A, Oven K. Landslides Following the 2015 Gorkha Earthquake: Monsoon 2016[EB/OL]. [2023-05-23]. http://ewf.nerc.ac.uk/2016/06/15/landslides-following-2015-gorkha-earthquake-monsoon-2016.
|
[5] |
Collins B, Jibson R. Assessment of Existing and Potential Landslide Hazards Resulting from the April 25, 2015 Gorkha, Nepal Earthquake Sequence[R]. New York: US Geological Survey, 2015.
|
[6] |
Kargel J S, Leonard G J, Shugar D H, et al. Geomorphic and Geologic Controls of Geohazards Induced by Nepal's 2015 Gorkha Earthquake[J]. Science, 2016, 351: aac8353. doi: 10.1126/science.aac8353
|
[7] |
Regmi A D, Dhital M R, Zhang J Q, et al. Landslide Susceptibility Assessment of the Region Affected by the 25 April 2015 Gorkha Earthquake of Nepal[J]. Journal of Mountain Science, 2016, 13(11): 1941-1957. doi: 10.1007/s11629-015-3688-2
|
[8] |
刘亢, 李海兵, 李亦纲, 等. 基于尼泊尔Mw 7.8地震的喜马拉雅俯冲带滑坡分布规律研究[J]. 地质学报, 2019, 93(10): 2666-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201910018.htm
Liu Kang, Li Haibing, Li Yigang, et al. Landslide Distribution Pattern in the Himalayan Subduction Zone Based on Mw 7.8 Earthquake in Nepal[J]. Acta Geologica Sinica, 2019, 93(10): 2666-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201910018.htm
|
[9] |
Valagussa A, Frattini P, Crosta G B, et al. Regional Landslide Susceptibility Analysis Following the 2015 Nepal Earthquake[C]//Workshop on World Landslide Forum, Cham, the Netherlands, 2017.
|
[10] |
丁超, 冯光财, 周玉杉, 等. 尼泊尔地震触发滑坡识别和雪崩形变分析[J]. 武汉大学学报(信息科学版), 2018, 43(6): 847-853. doi: 10.13203/j.whugis20160031
Ding Chao, Feng Guangcai, Zhou Yushan, et al. Nepal Earthquake Triggered Landslides Recognition and Deformation Analysis of Avalanches' Region[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 847-853. doi: 10.13203/j.whugis20160031
|
[11] |
陈文龙, 候勇, 李楠, 等. 基于主成分变换的滑坡识别方法及其在2015年尼泊尔地震中的应用[J]. 长江科学院院报, 2020, 37(1): 166-171. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202001031.htm
Chen Wenlong, Hou Yong, Li Nan, et al. Post-earthquake Landslide Detection in Nepal Based on Principal Component Analysis[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(1): 166-171. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202001031.htm
|
[12] |
蒋宁, 苏凤环, 徐京华, 等. 尼泊尔地震重灾区同震滑坡的分形特征及其原因分析[J]. 山地学报, 2020, 38(5): 699-709. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202005007.htm
Jiang Ning, Su Fenghuan, Xu Jinghua, et al. Fractal Characteristics and Causes of Co-seismic Landslides in the Nepal Earthquake Extremely Stricken Areas[J]. Mountain Research, 2020, 38(5): 699-709. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202005007.htm
|
[13] |
Farina P, Colombo D, Fumagalli A, et al. Permanent Scatterers for Landslide Investigations: Outcomes from the ESA-SLAM Project[J]. Engineering Geology, 2006, 88(3/4): 200-217.
|
[14] |
戴可人, 卓冠晨, 许强, 等. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1778-1786. doi: 10.13203/j.whugis20190092
Dai Keren, Zhuo Guanchen, Xu Qiang, et al. Tracing the Pre-failure Two-dimensional Surface Displacements of Nanyu Landslide, Gansu Province with Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1778-1786. doi: 10.13203/j.whugis20190092
|
[15] |
王志伟. 基于多源InSAR数据的三维地表形变解算方法研究[J]. 测绘学报, 2019, 48(9): 1206. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201909018.htm
Wang Zhiwei. Research on Resolving of Three-Dimensional Displacement from Multi-source InSAR Data[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1206. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201909018.htm
|
[16] |
杨丽叶, 赵超英, 杨成生. PO-SBAS技术用于错朗玛冰川三维时序运动特征分析[J]. 地球物理学进展, 2020, 35(6): 2116-2123. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202006010.htm
Yang Liye, Zhao Chaoying, Yang Chengsheng. Three-Dimensional Time Series Movement Analysis of the Cuolangma Glacier with PO-SBAS Technique[J]. Progress in Geophysics, 2020, 35(6): 2116-2123. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202006010.htm
|
[17] |
田颖颖. 2015年尼泊尔地震震区滑坡的继发性和震后演化研究[D]. 北京: 中国地震局地质研究所, 2020.
Tian Yingying. Post-seismic Evolution of the Landslides Triggered by the 2015 Nepal Earthquakes[D]. Beijing: Institute of Geology, China Earthquake Administration, 2020.
|
[18] |
张广伟, 雷建设. 2015尼泊尔Ms 8.1地震中等余震震源机制研究[J]. 地球物理学报, 2015, 58(11): 4298-4304. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511035.htm
Zhang Guangwei, Lei Jianshe. Focal Mechanism Solutions of Moderate-sized Aftershocks of the 2015 Ms 8.1 Nepal Earthquake[J]. Chinese Journal of Geophysics, 2015, 58(11): 4298-4304. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511035.htm
|
[19] |
Onn F. Modeling Water Vapor Using GPS with Application to Mitigating InSAR Atmospheric Distortions[D]. Stanford: Stanford University, 2006
|
[20] |
康亚. InSAR技术在西南山区滑坡探测与监测的应用[D]. 西安: 长安大学, 2016.
Kang Ya. Landslide Detection and Monitoring over Southwestern Mountainous Area with InSAR[D]. Xi'an: Chang'an University, 2016.
|
[21] |
Samsonov S, d'Oreye N. Multidimensional Time-series Analysis of Ground Deformation from Multiple InSAR Data Sets Applied to Virunga Volcanic Province[J]. Geophysical Journal International, 2012, 191(3): 1095-1108.
|
[22] |
Wu C H, Cui P, Li Y S, et al. Seismogenic Fault and Topography Control on the Spatial Patterns of Landslides Triggered by the 2017 Jiuzhaigou Earthquake[J]. Journal of Mountain Science, 2018, 15(4): 793-807.
|
[23] |
许冲, 徐锡伟, 郑文俊. 2013年7月22日岷县漳县Ms 6.6级地震滑坡编录与空间分布规律分析[J]. 工程地质学报, 2013, 21(5): 736-749. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201305011.htm
Xu Chong, Xu Xiwei, Zheng Wenjun. Compiling Inventory of Landslides Triggered by Minxian-Zhangxian Earthquake of July 22, 2013 and Their Spatial Distribution Analysis[J]. Journal of Engineering Geology, 2013, 21(5): 736-749. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201305011.htm
|
[24] |
Herrera G, Gutiérrez F, García-Davalillo J C, et al. Multi-sensor Advanced DInSAR Monitoring of very Slow Landslides: The Tena Valley Case Study (Central Spanish Pyrenees)[J]. Remote Sensing of Environment, 2013, 128: 31-43.
|
[25] |
戴可人, 张乐乐, 宋闯, 等. 川藏铁路沿线Sentinel-1影像几何畸变与升降轨适宜性定量分析[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1450-1460. doi: 10.13203/j.whugis20210130
Dai Keren, Zhang Lele, Song Chuang, et al. Quantitative Analysis of Sentinel-1 Imagery Geometric Distortion and Their Suitability Along Sichuan-Tibet Railway[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1450-1460. doi: 10.13203/j.whugis20210130
|
[26] |
Cigna F, Bateson L B, Jordan C J, et al. Simulating SAR Geometric Distortions and Predicting Persistent Scatterer Densities for ERS-1/2 and ENVISAT C-band SAR and InSAR Applications: Nationwide Feasibility Assessment to Monitor the Landmass of Great Britain with SAR Imagery[J]. Remote Sensing of Environment, 2014, 152: 441-466.
|
[27] |
Notti D, Herrera G, Bianchini S, et al. A Methodology for Improving Landslide PSI Data Analysis[J]. International Journal of Remote Sensing, 2014, 35(6): 2186-2214.
|
[28] |
Wang Y A, Liu D L, Dong J, et al. On the Applicability of Satellite SAR Interferometry to Landslide Hazards Detection in Hilly Areas: A Case Study of Shuicheng, Guizhou in Southwest China[J]. Landslides, 2021, 18(7): 2609-2619.
|
[29] |
Plank S, Singer J, Minet C, et al. Pre-survey Suitability Evaluation of the Differential Synthetic Aperture Radar Interferometry Method for Landslide Monitoring[J]. International Journal of Remote Sensing, 2012, 33(20): 6623-6637.
|
[30] |
Broomhead D S, King G P. Extracting Qualitative Dynamics from Experimental Data[J]. Physica D: Nonlinear Phenomena, 1986, 20(2/3): 217-236.
|
[1] | LIU Bingshi, ZOU Xiancai. Analysis of Sea and Land Water Storage Changes in the Western Pacific Under the Influence of ENSO[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1296-1303. DOI: 10.13203/j.whugis20170392 |
[2] | SHI Yan, DENG Min, LIU Qiliang, TANG Jianbo. A Multi-scale Regionalization Method for Sea Surface TemperatureBased on a Scale-Space Clustering[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1484-1489. |
[3] | ZHANG Shuangxi, ZHANG Chen, LI Mengkui, GAO Bingyu. Impact of Tibetan Plateau Deformation on China's Western Borders[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1145-1149. |
[4] | GONG Yisong, GUI Qingming, LI Baoli, BIAN Shaofeng. Curvature Measures of the Nonlinearity Degree of the Nonlinear Filtering and Its Application[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 904-908. |
[5] | ZHOU Yongjun, KOU Xinjian. Moment and Curvature Preserving Methods for Circular Targets Accurate Location[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 203-206. |
[6] | LU Tieding, TAO Benzao, ZHOU Shijian. Modeling and Algorithm of Linear Regression Based on Total Least Squares[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 504-507. |
[7] | BAO Lifeng~, . Distribution of Vertical Graident of Altimetry Gravity in the Western Pacific[J]. Geomatics and Information Science of Wuhan University, 2005, 30(9): 817-820. |
[8] | LIU Aixia, WANG Changyao, LIU Zhengjun, NIU Zheng. Application of NOAA-AVHRR to Desertification Monitoring for Western China[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 924-927. |
[9] | Wang Xinzhou. Acceptable Curvature of Nonlinear Model for Linear Approximation[J]. Geomatics and Information Science of Wuhan University, 1997, 22(2): 119-121. |
[10] | Yuan Xiuxiao. Correction of Earth Curvature in GPS supported Bundle Block Adjustment[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 223-227. |
1. |
王乐,黄观文,张勤,燕兴元,秦志伟,王利,崔博斌. 基于区域监测站的BDS定轨策略分析. 大地测量与地球动力学. 2018(05): 497-503+509 .
![]() | |
2. |
王乐,燕兴元,张勤,黄观文,秦志伟. 低轨卫星增强BDS卫星定轨技术探讨. 导航定位学报. 2017(04): 51-57 .
![]() |