Citation: | ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, PENG Jianbing, XU Qiang. Research on Loess Landslide Identification, Monitoring and Failure Mode with InSAR Technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007. DOI: 10.13203/j.whugis20190072 |
[1] |
Lin Q, Wang Y.Spatial and Temporal Analysis of a Fatal Landslide Inventory in China from 1950 to 2016 [J]. Landslides, 2018, 15(12): 2 357-2 372 doi: 10.1007/s10346-018-1037-6
|
[2] |
Shi X, Liao M, Li M, et al. Wide-Area Landslide Deformation Mapping with Multi-path ALOS PALSAR Data Stacks: A Case Study of Three Gorges Area, China [J]. Remote Sensing, 2016, 8(2):136 doi: 10.3390/rs8020136
|
[3] |
Sun L, Muller J P, Chen J. Time Series Analysis of Very Slow Landslides in the Three Gorges Region Through Small Baseline SAR Offset Tracking [J]. Remote Sensing, 2017, 9(12): 1 314 doi: 10.3390/rs9121314
|
[4] |
敖萌, 张勤, 赵超英, 等.改正的CR-InSAR技术用于四川甲居滑坡形变监测[J].武汉大学学报·信息科学版, 2017, 42(3):377-383 http://ch.whu.edu.cn/CN/abstract/abstract5689.shtml
Ao Meng, Zhang Qin, Zhao Chaoying, et al. An Improved CR-InSAR Technology Used for Deformation Monitoring in Jiaju Landslide, Sichuan [J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 377-383 http://ch.whu.edu.cn/CN/abstract/abstract5689.shtml
|
[5] |
张路, 廖明生, 董杰, 等.基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J].武汉大学学报·信息科学版, 2018, 43(12):2 039-2 049 http://ch.whu.edu.cn/CN/abstract/abstract6288.shtml
Zhang Lu, Liao Mingsheng, Dong Jie, et al. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry—A Case Study of Danba, Sichuan [J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 039-2 049 http://ch.whu.edu.cn/CN/abstract/abstract6288.shtml
|
[6] |
Zhao C, Kang Y, Zhang Q, et al. Landslide Identification and Monitoring Along the Jinsha River Catchment(Wudongde Reservoir Area), China, Using the InSAR Method [J]. Remote Sensing, 2018, 10(7): 993 doi: 10.3390/rs10070993
|
[7] |
Zhao C, Zhang Q, He Y, et al. Small-Scale Loess Landslide Monitoring with Small Baseline Subsets Interferometric Synthetic Aperture Radar Technique—Case Study of Xinyuan Landslide, Shaanxi, China [J]. J Appl Remote Sens, 2016, 10(2): 1-14 https://www.researchgate.net/publication/303852031_Small-scale_loess_landslide_monitoring_with_small_baseline_subsets_interferometric_synthetic_aperture_radar_technique-case_study_of_Xingyuan_landslide_Shaanxi_China
|
[8] |
Li M, Zhang L, Shi X, et al. Monitoring Active Motion of the Guobu Landslide Near the Laxiwa Hydropower Station in China by Time-Series Point-Like Targets Offset Tracking [J]. Remote Sensing of Environment, 2019, 221: 80-93 doi: 10.1016/j.rse.2018.11.006
|
[9] |
Zeng R, Meng X, Zhang F, et al. Characterizing Hydrological Processes on Loess Slopes Using Electrical Resistivity Tomography—A Case Study of the Heifangtai Terrace, Northwest China [J]. Journal of Hydrology, 2016, 541: 742-753 doi: 10.1016/j.jhydrol.2016.07.033
|
[10] |
Cui S, Pei X, Wu H, et al. Centrifuge Model Test of an Irrigation-Induced Loess Landslide in the Heifangtai Loess Platform, Northwest China [J]. Journal of Mountain Science, 2018, 15(1): 130-143 doi: 10.1007/s11629-017-4490-0
|
[11] |
Peng D, Xu Q, Liu F, et al. Distribution and Failure Modes of the Landslides in Heitai Terrace, China [J]. Engineering Geology, 2017, 236: 97-110 https://www.researchgate.net/publication/319948885_Distribution_and_failure_modes_of_the_landslides_in_Heitai_terrace_China
|
[12] |
Xu L, Dai F, Tu X, et al. Landslides in a Loess Platform, North-West China [J]. Landslides, 2014, 11(6): 993-1 005 doi: 10.1007/s10346-013-0445-x
|
[13] |
Xu L, Dai F, Gong Q, et al. Irrigation-Induced Loess Flow Failure in Heifangtai Platform, North-West [J]. Environmental Earth Sciences, 2012, 66(6): 1 707-1 713 doi: 10.1007/s12665-011-0950-y
|
[14] |
Xu L, Qiao X, Wu C, et al. Causes of Landslide Recurrence in a Loess Platform with Respect to Hydrological Processes [J]. Natural Hazards, 2012, 64(2): 1 657-1 670 doi: 10.1007/s11069-012-0326-y
|
[15] |
Lyons S, Sandwell D. Fault Creep Along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking [J]. J Geophys Res Solid Earth, 2003, 108(B1): 2 047 doi: 10.1029-2002JB001831/
|
[16] |
Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms [J]. IEEE Trans Geosci Remote Sens, 2002, 40(11): 2 375-2 383 doi: 10.1109/TGRS.2002.803792
|
[17] |
Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry [J]. IEEE Trans Geosci Remote Sens, 2001, 39(1): 8-20 doi: 10.1109/36.898661
|
[18] |
Samsonov S, d'Oreye N, Smets B. Ground Deformation Associated with Post-mining Activity at the French-German Border Revealed by Novel InSAR Time Series Method [J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23(1): 142-154 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2e4a6a65b387c2b4dde5976663d7f27f
|
[19] |
Samsonov S, Feng W, Peltier A, et al. Multidimensional Small Baseline Subset(MSBAS) for Volcano Monitoring in Two Dimensions: Opportunities and Challenges. Case Study Piton de la Fournaise Volcano [J]. Journal of Volcanology and Geothermal Research, 2017, 344: 121-138 doi: 10.1016/j.jvolgeores.2017.04.017
|
[20] |
Xu Q, Li H, He Y, et al. Comparison of Data-Driven Models of Loess Landslide Runout Distance Estimation [J]. Bull Eng Geol Environ, 2017, 8: 1-14 https://www.researchgate.net/publication/320846968_Comparison_of_data-driven_models_of_loess_landslide_runout_distance_estimation
|
[21] |
Qi X, Xu Q, Liu F. Analysis of Retrogressive Loess Flowslides in Heifangtai, China [J]. Engineering Geology, 2018, 236: 119-128 doi: 10.1016/j.enggeo.2017.08.028
|
[1] | Gan Wenxia, Pan Junjie, Geng Jing, Wang Huini, Hu Xiaodi. A Fusion Method for Infrared and Visible Images in All-weather Road Scenes[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240173 |
[2] | SONG Zhina, SUI Haigang, LI Yongcheng. A Survey on Ship Detection Technology in High-Resolution Optical Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703-1715. DOI: 10.13203/j.whugis20200481 |
[3] | XIANG Tianzhu, GAO Rongrong, YAN Li, XU Zhenliang. Region Feature Based Multi-scale Fusion Method for Thermal Infrared and Visible Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 911-917. DOI: 10.13203/j.whugis20141007 |
[4] | ZHANG Lifu, YANG Hang, FANG Conghui, PAN Mao. Thermal Infrared Target Recognition Using Multi-scale Fractal Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 339-342. |
[5] | YING Shen, LI Lin, GAO Yurong. Pedestrian Simulation in Urban Space Based on Visibility Analysis and Agent Techniques[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1367-1370. |
[6] | XU Hanqiu, ZHANG Tiejun, LI Chunhua. Cross Comparison of Thermal Infrared Data Between ASTER and Landsat ETM~+ Sensors[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 936-940. |
[7] | ZHU Zhongmin, GONG Wei, YU Juan, TIAN Liqiao. Applicability Analysis of Transformation Models for Aerosol Optical Depth and Horizontal Visibility[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1086-1090. |
[8] | MAO Yue, SONG Xiaoyong, FENG Laiping. Visibility Analysis of X-ray Pulsar Navigation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 222-225. |
[9] | YANG Guijun, LIU Qinhuo, LIU Qiang, GU Xingfa. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 786-790. |
[10] | GONG Shengrong, YANG Shanchao. A Visible Watermarking Algorithm Holding Image Content[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 757-760. |
1. |
徐辛超,高阳. 融合跳跃连接网络与双重注意力机制的可见光与红外遥感影像匹配方法. 地球信息科学学报. 2025(03): 766-783 .
![]() | |
2. |
姚国标,张成成,龚健雅,张现军,李兵. 非线性尺度空间改进的光学与SAR影像自动配准. 武汉大学学报(信息科学版). 2024(12): 2249-2260 .
![]() |