Citation: | JING Yinghong, SHEN Huanfeng, LI Xinghua, WU Jingan, QIU Zhonghang. Spatial Downscaling of Remote Sensing Parameters from Perspective of Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 175-189. DOI: 10.13203/j.whugis20220549 |
Low spatial resolution is one of the main bottlenecks restricting the fine application of remote sensing parameters. Spatial downscaling is an effective way to improve their spatial resolution and application capabilities. Researchers have developed various downscaling methods for different remote sensing parameters. However, a unified and general method classification system has not yet been formed. Based on the in-depth commonality analysis of the downscaling of various parameters, this paper systematically summarizes the spatial downscaling methods from the perspective of data fusion, taking into account the required complementary information. Four types of downscaling methods are summarized: Multi-parameter fusion, spatiotemporal fusion, remote sensing-model fusion, and super-resolution reconstruction implicit fusion. The advantages, disadvantages, and applicable scenarios of various methods are analyzed, and the development trend of spatial downscaling method research is discussed. It can provide theoretical and technical support for improving the refined application ability of remote sensing data.
[1] |
李小文, 王祎婷. 定量遥感尺度效应刍议[J]. 地理学报, 2013, 68(9): 1163-1169.
Li Xiaowen, Wang Yiting. Prospects on Future Developments of Quantitative Remote Sensing[J]. Acta Geographica Sinica, 2013, 68(9): 1163-1169.
|
[2] |
Wu X D, Xiao Q, Wen J G, et al. Advances in Quantitative Remote Sensing Product Validation: Overview and Current Status[J]. Earth‐Science Reviews, 2019, 196: 102875.
|
[3] |
Peng J, Loew A, Merlin O, et al. A Review of Spatial Downscaling of Satellite Remotely Sensed Soil Moisture[J]. Reviews of Geophysics, 2017, 55(2): 341-366.
|
[4] |
Sabaghy S, Walker J P, Renzullo L J, et al. Spatially Enhanced Passive Microwave Derived Soil Moisture: Capabilities and Opportunities[J]. Remote Sensing of Environment, 2018, 209: 551-580.
|
[5] |
栾海军, 田庆久, 章欣欣, 等. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
Luan Haijun, Tian Qingjiu, Zhang Xinxin, et al. Trends on Scaling Research for Land Surface Parameters in Quantitative Remote Sensing[J]. Advances in Earth Science, 2018, 33(5): 483-492.
|
[6] |
Atkinson P M. Downscaling in Remote Sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 22: 106-114.
|
[7] |
唐韵玮, 张景雄. 基于面‐点协同克里格和多点地统计模拟的遥感影像融合方法[J]. 武汉大学学报(信息科学版), 2014, 39(7): 856-861.
Tang Yunwei, Zhang Jingxiong. Area-to-Point Cokriging and Multiple-point Geostatistical Simulation for Remotely Sensed Image Fusion[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 856-861.
|
[8] |
Qu Y Q, Zhu Z L, Montzka C, et al. Inter-Comparison of Several Soil Moisture Downscaling Methods over the Qinghai-Tibet Plateau, China[J]. Journal of Hydrology, 2021, 592: 125616.
|
[9] |
周壮, 赵少杰, 蒋玲梅. 被动微波遥感土壤水分产品降尺度方法研究综述[J]. 北京师范大学学报(自然科学版), 2016, 52(4): 479-485.
Zhou Zhuang, Zhao Shaojie, Jiang Lingmei. Downscaling Methods of Passive Microwave Remote Sensing of Soil Moisture[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(4): 479-485.
|
[10] |
覃湘栋, 庞治国, 江威, 等. 土壤水分微波反演方法进展和发展趋势[J]. 地球信息科学学报, 2021, 23(10): 1728-1742.
Qin Xiangdong, Pang Zhiguo, Jiang Wei, et al. Progress and Development Trend of Soil Moisture Microwave Remote Sensing Retrieval Method[J]. Journal of Geo‐Information Science, 2021, 23(10): 1728-1742.
|
[11] |
Zhan W F, Chen Y H, Zhou J, et al. Disaggregation of Remotely Sensed Land Surface Temperature: Literature Survey, Taxonomy, Issues, and Caveats[J]. Remote Sensing of Environment, 2013, 131: 119-139.
|
[12] |
董文全, 蒙继华. 遥感数据时空融合研究进展及展望[J]. 国土资源遥感, 2018, 30(2): 1-11.
Dong Wenquan, Meng Jihua. Review of Spatiotemporal Fusion Model of Remote Sensing Data[J]. Remote Sensing for Land & Resources, 2018, 30(2): 1-11.
|
[13] |
张立福, 彭明媛, 孙雪剑, 等. 遥感数据融合研究进展与文献定量分析(1992—2018)[J]. 遥感学报, 2019, 23(4): 603-619.
Zhang Lifu, Peng Mingyuan, Sun Xuejian, et al. Progress and Bibliometric Analysis of Remote Sensing Data Fusion Methods(1992—2018)[J]. Journal of Remote Sensing, 2019, 23(4): 603-619.
|
[14] |
李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1): 148-166.
Li Shutao, Li Congyu, Kang Xudong. Development Status and Future Prospects of Multi-source Remote Sensing Image Fusion[J]. National Remote Sensing Bulletin, 2021, 25(1): 148-166.
|
[15] |
Ghassemian H. A Review of Remote Sensing Image Fusion Methods[J]. Information Fusion, 2016, 32: 75-89.
|
[16] |
Schmitt M, Zhu X X. Data Fusion and Remote Sensing: An Ever-Growing Relationship[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(4): 6-23.
|
[17] |
Ghamisi P, Rasti B, Yokoya N, et al. Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(1): 6-39.
|
[18] |
Jia S F, Zhu W B, Lű A, et al. A Statistical Spatial Downscaling Algorithm of TRMM Precipitation Based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment, 2011, 115(12): 3069-3079.
|
[19] |
曹永攀, 晋锐, 韩旭军, 等. 基于MODIS和AMSR-E遥感数据的土壤水分降尺度研究[J]. 遥感技术与应用, 2011, 26(5): 590-597.
Cao Yongpan, Jin Rui, Han Xujun, et al. A Downscaling Method for AMSR-E Soil Moisture Using MODIS Derived Dryness Index[J]. Remote Sensing Technology and Application, 2011, 26(5): 590-597.
|
[20] |
Xu S G, Wu C Y, Wang L, et al. A New Satellite-Based Monthly Precipitation Downscaling Algorithm with Non-stationary Relationship Between Precipitation and Land Surface Characteristics[J]. Remote Sensing of Environment, 2015, 162: 119-140.
|
[21] |
Das D, Ganguly A R, Obradovic Z. A Bayesian Sparse Generalized Linear Model with an Application to Multiscale Covariate Discovery for Observed Rainfall Extremes over the United States[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6689-6702.
|
[22] |
Piles M, Camps A, Vall-Llossera M, et al. Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3156-3166.
|
[23] |
Wang Y L, Huang X D, Wang J S, et al. AMSR2 Snow Depth Downscaling Algorithm Based on a Multifactor Approach over the Tibetan Plateau, China[J]. Remote Sensing of Environment, 2019, 231: 111268.
|
[24] |
He X G, Chaney N W, Schleiss M, et al. Spatial Downscaling of Precipitation Using Adaptable Random Forests[J]. Water Resources Research, 2016, 52(10): 8217-8237.
|
[25] |
Weng Q H, Fu P. Modeling Diurnal Land Temperature Cycles over Los Angeles Using Downscaled GOES Imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97: 78-88.
|
[26] |
Srivastava P K, Han D W, Ramirez M R, et al. Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application[J]. Water Resources Management, 2013, 27(8): 3127-3144.
|
[27] |
Li W, Ni L, Li Z L, et al. Evaluation of Machine Learning Algorithms in Spatial Downscaling of MODIS Land Surface Temperature[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(7): 2299-2307.
|
[28] |
Yuan Q Q, Shen H F, Li T W, et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges[J]. Remote Sensing of Environment, 2020, 241: 111716.
|
[29] |
Dong P, Gao L, Zhan W F, et al. Global Comparison of Diverse Scaling Factors and Regression Models for Downscaling Landsat-8 Thermal Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 44-56.
|
[30] |
Chakrabarti S, Bongiovanni T, Judge J, et al. Downscaling Satellite-Based Soil Moisture in Heterogeneous Regions Using High-Resolution Remote Sensing Products and Information Theory: A Synthetic Study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 85-101.
|
[31] |
Piles M, Petropoulos G P, Sánchez N, et al. Towards Improved Spatio-Temporal Resolution Soil Moisture Retrievals from the Synergy of SMOS and MSG SEVIRI Spaceborne Observations[J]. Remote Sensing of Environment, 2016, 180: 403-417.
|
[32] |
Zhao W, Li A N, Jin H A, et al. Performance Evaluation of the Triangle-Based Empirical Soil Moisture Relationship Models Based on Landsat-5 TM Data and in Situ Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2632-2645.
|
[33] |
Alemohammad S H, Kolassa J, Prigent C, et al. Global Downscaling of Remotely Sensed Soil Moisture Using Neural Networks[J]. Hydrology and Earth System Sciences, 2018, 22(10): 5341-5356.
|
[34] |
Long D, Bai L L, Yan L, et al. Generation of Spatially Complete and Daily Continuous Surface Soil Moisture of High Spatial Resolution[J]. Remote Sensing of Environment, 2019, 233: 111364.
|
[35] |
Hu F M, Wei Z S, Zhang W, et al. A Spatial Downscaling Method for SMAP Soil Moisture Through Visible and Shortwave-Infrared Remote Sensing Data[J]. Journal of Hydrology, 2020, 590: 125360.
|
[36] |
邓雅文, 凌子燕, 孙娜, 等. 基于广义回归神经网络的京津冀地区土壤湿度遥感逐日估算研究[J]. 地球信息科学学报, 2021, 23(4): 749-761.
Deng Yawen, Ling Ziyan, Sun Na, et al. Daily Estimation of Soil Moisture over Beijing-Tianjin-Hebei Region Based on General Regression Neural Network Model[J]. Journal of Geo‑Information Science, 2021, 23(4): 749-761.
|
[37] |
Huang S Z, Zhang X, Chen N C, et al. Generating High-Accuracy and Cloud-Free Surface Soil Moisture at 1 km Resolution by Point-Surface Data Fusion over the Southwestern U.S[J]. Agricultural and Forest Meteorology, 2022, 321: 108985.
|
[38] |
Zakšek K, Oštir K. Downscaling Land Surface Temperature for Urban Heat Island Diurnal Cycle Analysis[J]. Remote Sensing of Environment, 2012, 117: 114-124.
|
[39] |
Hutengs C, Vohland M. Downscaling Land Surface Temperatures at Regional Scales with Random Forest Regression[J]. Remote Sensing of Environment, 2016, 178: 127-141.
|
[40] |
Zhang Q, Wang N L, Cheng J, et al. A Stepwise Downscaling Method for Generating High-Resolution Land Surface Temperature from AMSR-E Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5669-5681.
|
[41] |
张义峥, 吴鹏海, 段四波, 等. Landsat 8地表温度产品降尺度深度学习方法研究[J]. 遥感学报, 2021, 25(8): 1767-1777.
Zhang Yizheng, Wu Penghai, Duan Sibo, et al. Downscaling of Landsat 8 Land Surface Temperature Products Based on Deep Learning[J]. National Remote Sensing Bulletin, 2021, 25(8): 1767-1777.
|
[42] |
祝新明, 宋小宁, 冷佩, 等. 多尺度地理加权回归的地表温度降尺度研究[J]. 遥感学报, 2021, 25(8): 1749-1766.
Zhu Xinming, Song Xiaoning, Leng Pei, et al. Spatial Downscaling of Land Surface Temperature with the Multi-scale Geographically Weighted Regression[J]. National Remote Sensing Bulletin, 2021, 25(8): 1749-1766.
|
[43] |
王斐, 覃志豪, 宋彩英. 利用Landsat TM影像进行地表温度像元分解[J]. 武汉大学学报(信息科学版), 2017, 42(1): 116-122.
Wang Fei, Qin Zhihao, Song Caiying. An Efficient Approach for Pixel Decomposition of Land Surface Temperature from Landsat TM Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 116-122.
|
[44] |
Ma Z Q, Shi Z, Zhou Y, et al. A Spatial Data Mining Algorithm for Downscaling TMPA 3B43 V7 Data over the Qinghai-Tibet Plateau with the Effects of Systematic Anomalies Removed[J]. Remote Sensing of Environment, 2017, 200: 378-395.
|
[45] |
胡实, 韩建, 占车生, 等. 太行山区遥感卫星反演降雨产品降尺度研究[J]. 地理研究, 2020, 39(7): 1680-1690.
Hu Shi, Han Jian, Zhan Chesheng, et al. Spatial Downscaling of Remotely Sensed Precipitation in Taihang Mountains[J]. Geographical Research, 2020, 39(7): 1680-1690.
|
[46] |
Tan W W, Tian L Q, Shen H F, et al. A New Downscaling-Calibration Procedure for TRMM Precipitation Data over Yangtze River Economic Belt Region Based on a Multivariate Adaptive Regression Spline Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4702819.
|
[47] |
张亮林, 潘竟虎, 赖建波, 等. 基于GWR降尺度的京津冀地区PM2.5质量浓度空间分布估算[J]. 环境科学学报, 2019, 39(3): 832-842.
Zhang Lianglin, Pan Jinghu, Lai Jianbo, et al. Estimation of PM2.5 Mass Concentrations in Beijing-Tianjin-Hebei Region Based on Geographically Weighted Regression and Spatial Downscaling Method[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 832-842.
|
[48] |
Yang Q Q, Yuan Q Q, Yue L W, et al. Mapping PM2.5 Concentration at a Sub-km Level Resolution: A Dual-Scale Retrieval Approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 165: 140-151.
|
[49] |
Carella G, Vrac M, Brogniez H, et al. Statistical Downscaling of Water Vapour Satellite Measurements from Profiles of Tropical Ice Clouds[J]. Earth System Science Data, 2020, 12(1): 1-20.
|
[50] |
Jin Y, Ge Y, Wang J H, et al. Deriving Temporally Continuous Soil Moisture Estimations at Fine Resolution by Downscaling Remotely Sensed Product[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 8-19.
|
[51] |
Zhang T, Li B L, Yuan Y C, et al. Spatial Downscaling of TRMM Precipitation Data Considering the Impacts of Macro-Geographical Factors and Local Elevation in the Three-River Headwaters Region[J]. Remote Sensing of Environment, 2018, 215: 109-127.
|
[52] |
Li L F, Wu J J. Spatiotemporal Estimation of Satellite-Borne and Ground-Level NO2 Using Full Residual Deep Networks[J]. Remote Sensing of Environment, 2021, 254: 112257.
|
[53] |
陈旻, 闾国年, 周成虎, 等. 面向新时代地理学特征研究的地理建模与模拟系统发展及构建思考[J]. 中国科学: 地球科学, 2021, 51(10): 1664-1680.
Chen Min, Guonian Lü, Zhou Chenghu, et al. Thinking on the Development and Construction of Geographic Modeling and Simulation System for the Study of Geographical Characteristics in the New Era[J]. Scientia Sinica (Terrae), 2021, 51(10): 1664-1680.
|
[54] |
Merlin O, Jacob F, Wigneron J P, et al. Multidimensional Disaggregation of Land Surface Temperature Using High-Resolution Red, Near-Infrared, Shortwave-Infrared, and Microwave-L Bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1864-1880.
|
[55] |
宋承运, 胡光成, 王艳丽, 等. 基于表观热惯量与温度植被指数的FY-3B土壤水分降尺度研究[J]. 国土资源遥感, 2021, 33(2): 20-26.
Song Chengyun, Hu Guangcheng, Wang Yanli, al et. Downscaling FY-3B Soil Moisture Based on Apparent Thermal Inertia and Temperature Vegetation Index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
|
[56] |
Merlin O, Chehbouni A, Walker J P, et al. A Simple Method to Disaggregate Passive Microwave-Based Soil Moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(3): 786-796.
|
[57] |
Merlin O, Walker J P, Chehbouni A, et al. Towards Deterministic Downscaling of SMOS Soil Moisture Using MODIS Derived Soil Evaporative Efficiency[J]. Remote Sensing of Environment, 2008, 112(10): 3935-3946.
|
[58] |
Merlin O, Bitar A, Walker J P, et al. An Improved Algorithm for Disaggregating Microwave-Derived Soil Moisture Based on Red, Near-Infrared and Thermal-Infrared Data[J]. Remote Sensing of Environment, 2010, 114(10): 2305-2316.
|
[59] |
Merlin O, Bitar A, Walker J P, et al. A Sequential Model for Disaggregating Near-Surface Soil Moisture Observations Using Multi-resolution Thermal Sensors[J]. Remote Sensing of Environment, 2009, 113(10): 2275-2284.
|
[60] |
Sun H, Cai C C, Liu H X, et al. Microwave and Meteorological Fusion: A Method of Spatial Downscaling of Remotely Sensed Soil Moisture[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(4): 1107-1119.
|
[61] |
Song P L, Zhang Y Q, Tian J. Improving Surface Soil Moisture Estimates in Humid Regions by an Enhanced Remote Sensing Technique[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091459.
|
[62] |
Ranney K J, Niemann J D, Lehman B M, et al. A Method to Downscale Soil Moisture to Fine Resolutions Using Topographic, Vegetation, and Soil Data[J]. Advances in Water Resources, 2015, 76: 81-96.
|
[63] |
Hoehn D C, Niemann J D, Green T R, et al. Downscaling Soil Moisture over Regions that Include Multiple Coarse-Resolution Grid Cells[J]. Remote Sensing of Environment, 2017, 199: 187-200.
|
[64] |
Cowley G S, Niemann J D, Green T R, et al. Impacts of Precipitation and Potential Evapotranspiration Patterns on Downscaling Soil Moisture in Regions with Large Topographic Relief[J]. Water Resources Research, 2017, 53(2): 1553-1574.
|
[65] |
Merlin O, Chehbouni A G, Kerr Y H, et al. A Combined Modeling and Multispectral/Multiresolution Remote Sensing Approach for Disaggregation of Surface Soil Moisture: Application to SMOS Configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2036-2050.
|
[66] |
Merlin O, Rudiger C, Bitar A, et al. Disaggregation of SMOS Soil Moisture in Southeastern Australia[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1556-1571.
|
[67] |
张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5): 1050-1061.
Zhang Liangpei, Shen Huanfeng. Progress and Future of Remote Sensing Data Fusion[J]. Journal of Remote Sensing, 2016, 20(5): 1050-1061.
|
[68] |
Gao F, Masek J, Schwaller M, et al. On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2207-2218.
|
[69] |
冯婵莹, 汪子豪, 郑成洋. 基于分层线性回归的MODIS反照率产品降尺度方法研究[J]. 遥感技术与应用, 2019, 34(3): 602-611.
Feng Chanying, Wang Zihao, Zheng Chengyang. An Albedo Downscaling Method Based on Stratified Linear Regression[J]. Remote Sensing Technology and Application, 2019, 34(3): 602-611.
|
[70] |
Zhu X L, Cai F Y, Tian J Q, et al. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions[J]. Remote Sensing, 2018, 10(4): 527.
|
[71] |
Li J, Li Y F, He L, et al. Spatio-Temporal Fusion for Remote Sensing Data: An Overview and New Benchmark[J].Science China Information Sciences, 2020, 63(4): 140301.
|
[72] |
Zhukov B, Oertel D, Lanzl F, et al. Unmixing-Based Multisensor Multiresolution Image Fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1212-1226.
|
[73] |
Gevaert C M, García-Haro F J. A Comparison of STARFM and an Unmixing-Based Algorithm for Landsat and MODIS Data Fusion[J]. Remote Sensing of Environment, 2015, 156: 34-44.
|
[74] |
张春森, 李辉. 顾及混合像元分解的遥感图像光谱模拟[J]. 武汉大学学报(信息科学版), 2013, 38(9): 1052-1056.
Zhang Chunsen, Li Hui. The Remote Sensing Image Spectrum Simulation with Mixed Pixel[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1052-1056.
|
[75] |
Zhu X L, Chen J, Gao F, et al. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions[J]. Remote Sensing of Environment, 2010, 114(11): 2610-2623.
|
[76] |
Huang B, Song H H. Spatiotemporal Reflectance Fusion via Sparse Representation[J].IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3707-3716.
|
[77] |
Song H H, Liu Q S, Wang G J, et al. Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 821-829.
|
[78] |
Settle J J, Drake N A. Linear Mixing and the Estimation of Ground Cover Proportions[J]. International Journal of Remote Sensing, 1993, 14(6): 1159-1177.
|
[79] |
Wang Q M, Peng K D, Tang Y J, et al. Blocks-Removed Spatial Unmixing for Downscaling MODIS Images[J]. Remote Sensing of Environment, 2021, 256: 112325.
|
[80] |
Cheng Q, Liu H Q, Shen H F, et al. A Spatial and Temporal Nonlocal Filter-Based Data Fusion Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4476-4488.
|
[81] |
Wu P H, Shen H F, Zhang L P, et al. Integrated Fusion of Multi-scale Polar-Orbiting and Geostationary Satellite Observations for the Mapping of High Spatial and Temporal Resolution Land Surface Temperature[J]. Remote Sensing of Environment, 2015, 156: 169-181.
|
[82] |
Wu B, Huang B, Zhang L P. An Error-Bound-Regularized Sparse Coding for Spatiotemporal Reflectance Fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6791-6803.
|
[83] |
Liu X, Deng C W, Wang S G, et al. Fast and Accurate Spatiotemporal Fusion Based Upon Extreme Learning Machine[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 2039-2043.
|
[84] |
Ke Y H, Im J, Park S, et al. Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches[J]. Remote Sensing, 2016, 8(3): 215.
|
[85] |
Tan Z Y, Di L P, Zhang M D, et al. An Enhanced Deep Convolutional Model for Spatiotemporal Image Fusion[J]. Remote Sensing, 2019, 11(24): 2898.
|
[86] |
Chen J, Wang L Z, Feng R Y, et al. CycleGAN-STF: Spatiotemporal Fusion via CycleGAN-Based Image Generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5851-5865.
|
[87] |
Tan Z Y, Gao M L, Li X H, et al. A Flexible Reference-Insensitive Spatiotemporal Fusion Model for Remote Sensing Images Using Conditional Generative Adversarial Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5601413.
|
[88] |
Wu P H, Shen H F, Ai T H, et al. Land-Surface Temperature Retrieval at High Spatial and Temporal Resolutions Based on Multi-sensor Fusion[J]. International Journal of Digital Earth, 2013, 6(sup1): 113-133.
|
[89] |
Weng Q H, Fu P, Gao F. Generating Daily Land Surface Temperature at Landsat Resolution by Fusing Landsat and MODIS Data[J]. Remote Sensing of Environment, 2014, 145: 55-67.
|
[90] |
魏然, 单杰. 城市地表温度影像时空融合方法研究[J]. 武汉大学学报(信息科学版), 2018, 43(3): 428-435.
Wei Ran, Shan Jie. Spatial and Temporal Fusion for Urban Land Surface Temperature Image Mapping[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 428-435.
|
[91] |
Jiang H T, Shen H F, Li X H, et al. Extending the SMAP 9-km Soil Moisture Product Using a Spatio-Temporal Fusion Model[J]. Remote Sensing of Environment, 2019, 231: 111224.
|
[92] |
Xu C Y, Qu J, Hao X J, et al. Downscaling of Surface Soil Moisture Retrieval by Combining MODIS/Landsat and in Situ Measurements[J]. Remote Sensing, 2018, 10(2): 210.
|
[93] |
肖窈, 曾超, 沈焕锋. 结合参量统计与时空融合的土壤水分降尺度方法[J]. 遥感技术与应用, 2021, 36(5): 1033-1043.
Xiao Yao, Zeng Chao, Shen Huanfeng. Soil Moisture Downscaling Method Combining Parameter Statistics and Spatio-Temporal Fusion[J]. Remote Sensing Technology and Application, 2021, 36(5): 1033-1043.
|
[94] |
Li X Y, Long D. An Improvement in Accuracy and Spatiotemporal Continuity of the MODIS Precipitable Water Vapor Product Based on a Data Fusion Approach[J]. Remote Sensing of Environment, 2020, 248: 111966.
|
[95] |
Cammalleri C, Anderson M C, Gao F, et al. A Data Fusion Approach for Mapping Daily Evapotranspiration at Field Scale[J]. Water Resources Research, 2013, 49(8): 4672-4686.
|
[96] |
柳文杰, 曾永年, 张猛. 融合时间序列环境卫星数据与物候特征的水稻种植区提取[J]. 遥感学报, 2018, 22(3): 381-391.
Liu Wenjie, Zeng Yongnian, Zhang Meng. Mapping Rice Paddy Distribution by Using Time Series HJ Blend Data and Phenological Parameters[J]. Journal of Remote Sensing, 2018, 22(3): 381-391.
|
[97] |
Liao C H, Wang J F, Pritchard I, et al. A Spatio-Temporal Data Fusion Model for Generating NDVI Time Series in Heterogeneous Regions[J]. Remote Sensing, 2017, 9(11): 1125.
|
[98] |
万华伟, 王锦地, 肖志强, 等. 融合MODIS与ASTER数据生成高空间分辨率时间序列LAI方法研究[J]. 北京师范大学学报(自然科学版), 2007, 43(3): 303-308.
Wan Huawei, Wang Jindi, Xiao Zhiqiang, et al. Generating the High Spatial and Temporal Resolution LAI by Fusing MODIS and ASTER[J].Journal of Beijing Normal University(Natural Science), 2007, 43(3): 303-308.
|
[99] |
Houborg R, McCabe M F, Gao F. A Spatio-Temporal Enhancement Method for Medium Resolution LAI (STEM-LAI)[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 47: 15-29.
|
[100] |
Bai L L, Long D, Yan L. Estimation of Surface Soil Moisture with Downscaled Land Surface Temperatures Using a Data Fusion Approach for Heterogeneous Agricultural Land[J]. Water Resources Research, 2019, 55(2): 1105-1128.
|
[101] |
李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007, 17(2): 163-173.
Li Xin, Huang Chunlin, Che Tao, et al. Progress and Prospect of Land Surface Data Assimilation System in China[J]. Progress in Natural Science, 2007, 17(2): 163-173.
|
[102] |
Kaheil Y H, Gill M K, McKee M, et al. Downscaling and Assimilation of Surface Soil Moisture Using Ground Truth Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(5): 1375-1384.
|
[103] |
Nagler T, Rott H, Malcher P, et al. Assimilation of Meteorological and Remote Sensing Data for Snowmelt Runoff Forecasting[J]. Remote Sensing of Environment, 2008, 112(4): 1408-1420.
|
[104] |
Boussetta S, Koike T, Yang K, et al. Development of a Coupled Land-Atmosphere Satellite Data Assimilation System for Improved Local Atmospheric Simulations[J]. Remote Sensing of Environment, 2008, 112(3): 720-734.
|
[105] |
Verhoest N E C,Berg M J,Martens B,al et.Copula-Based Downscaling of Coarse-Scale Soil Moisture Observations with Implicit Bias Correction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3507-3521.
|
[106] |
Sahoo A K, Lannoy G J M, Reichle R H, et al. Assimilation and Downscaling of Satellite Observed Soil Moisture over the Little River Experimental Watershed in Georgia, USA[J]. Advances in Water Resources, 2013, 52: 19-33.
|
[107] |
Lievens H, Tomer S K, Al Bitar A, et al. SMOS Soil Moisture Assimilation for Improved Hydrologic Simulation in the Murray Darling Basin, Australia[J]. Remote Sensing of Environment, 2015, 168: 146-162.
|
[108] |
Jin H A, Li A N, Yin G F, et al. A Multiscale Assimilation Approach to Improve Fine-Resolution Leaf Area Index Dynamics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 8153-8168.
|
[109] |
Reichle R H, Entekhabi D, McLaughlin D B. Downscaling of Radio Brightness Measurements for Soil Moisture Estimation: A Four-Dimensional Variational Data Assimilation Approach[J]. Water Resources Research, 2001, 37(9): 2353-2364.
|
[110] |
Ines A V M, Droogers P. Inverse Modelling in Estimating Soil Hydraulic Functions: A Genetic Algorithm Approach[J]. Hydrology and Earth System Sciences, 2002, 6(1): 49-66.
|
[111] |
Shin Y, Mohanty B P. Development of a Deterministic Downscaling Algorithm for Remote Sensing Soil Moisture Footprint Using Soil and Vegetation Classifications[J]. Water Resources Research, 2013, 49(10): 6208-6228.
|
[112] |
Reichstein M, Camps-Valls G, Stevens B, et al. Deep Learning and Process Understanding for Data-Driven Earth System Science[J]. Nature, 2019, 566: 195-204.
|
[113] |
Liu X M, Wang M H. Deriving VIIRS High-Spatial Resolution Water Property Data over Coastal and Inland Waters Using Deep Convolutional Neural Network[J]. Remote Sensing, 2021, 13(10): 1944.
|
[114] |
Liu X M, Wang M H. Super-Resolution of VIIRS-Measured Ocean Color Products Using Deep Convolutional Neural Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 114-127.
|
[115] |
Ducournau A, Fablet R. Deep Learning for Ocean Remote Sensing: An Application of Convolutional Neural Networks for Super-Resolution on Satellite-Derived SST Data[C]//The 9th IAPR Workshop on Pattern Recogniton in Remote Sensing, Cancun, Mexico, 2016.
|
[116] |
Dong C, Loy C C, He K M, et al. Image Super-Resolution Using Deep Convolutional Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
|
[117] |
Yu Z Y, Yang K, Luo Y, et al. Research on the Lake Surface Water Temperature Downscaling Based on Deep Learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5550-5558.
|
[118] |
Wang H Y, Juang J C. Retrieval of Ocean Wind Speed Using Super-Resolution Delay-Doppler Maps[J]. Remote Sensing, 2020, 12(6): 916.
|
[119] |
Ping B, Meng Y S, Xue C J, et al. Can the Structure Similarity of Training Patches Affect the Sea Surface Temperature Deep Learning Super-Resolution?[J]. Remote Sensing, 2021, 13(18): 3568.
|
[120] |
Ping B, Su F Z, Han X X, et al. Applications of Deep Learning-Based Super-Resolution for Sea Surface Temperature Reconstruction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 887-896.
|
[121] |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[C]// The 27th International Conference on Neural Information Processing Systems-Volume 2, Montreal, Canada, 2014.
|
[122] |
Lambhate D, Subramani D N. Super-Resolution of Sea Surface Temperature Satellite Images[C]//Global Oceans, CoastGulf,Biloxi, USA, 2020.
|
[123] |
Leinonen J, Nerini D, Berne A. Stochastic Super-Resolution for Downscaling Time-Evolving Atmospheric Fields with a Generative Adversarial Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7211-7223.
|
[124] |
Jing Y H, Lin L P, Li X H, et al. An Attention Mechanism Based Convolutional Network for Satellite Precipitation Downscaling over China[J]. Journal of Hydrology, 2022, 613: 128388.
|
[125] |
Jing Y H, Lin L P, Li X H, et al. Cascaded Downscaling‑Calibration Networks for Satellite Precipitation Estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1506105.
|
[126] |
Chen W J, Huang C L, Yang Z L. More Severe Drought Detected by the Assimilation of Brightness Temperature and Terrestrial Water Storage Anomalies in Texas During 2010—2013[J]. Journal of Hydrology, 2021, 603: 126802.
|
[127] |
Stoffelen A. Toward the True Near-Surface Wind Speed: Error Modeling and Calibration Using Triple Collocation[J]. Journal of Geophysical Research: Oceans, 1998, 103(C4): 7755-7766.
|
[128] |
许剑辉, 舒红. 基于Triple-Collocation的地面观测与卫星遥感数据融合的雪深反演[J]. 武汉大学学报(信息科学版), 2015, 40(4): 469-473.
Xu Jianhui, Shu Hong. The Triple-Collocation-Based Fusion of In‐Situ and Satellite Remote Sensing Data for Snow Depth Retrieval[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4): 469-473.
|
[129] |
Lü A F, Zhang Z L, Zhu H C. A Neural-Network Based Spatial Resolution Downscaling Method for Soil Moisture: Case Study of Qinghai Province[J]. Remote Sensing, 2021, 13(8): 1583.
|
[130] |
Chantry M, Christensen H, Dueben P, et al. Opportunities and Challenges for Machine Learning in Weather and Climate Modelling: Hard, Medium and Soft AI[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379(2194): 20200083.
|
[131] |
Yoon J H, Ruby Leung L, Correia J. Comparison of Dynamically and Statistically Downscaled Seasonal Climate Forecasts for the Cold Season over the United States[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D21): D21109.
|
[132] |
DuchÊne F, Van S B, Caluwaerts S, al et. A Statistical‑Dynamical Methodology to Downscale Regional Climate Projections to Urban Scale[J]. Journal of Applied Meteorology and Climatology, 2020, 59(6): 1109-1123.
|
[1] | MENG Yiyue, GUO Chi, LIU Jingnan. Deep Reinforcement Learning Visual Target Navigation Method Based on Attention Mechanism and Reward Shaping[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1100-1108. DOI: 10.13203/j.whugis20230193 |
[2] | GAO Kuiliang, LIU Bing, YU Xuchu, YU Anzhu, SUN Yifan. Automatic Network Structure Search Method for Hyperspectral Image Classification[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 225-235. DOI: 10.13203/j.whugis20210380 |
[3] | WANG Jie, LIU Jiahang, LING Xinpeng, DUAN Zexian. Deep Learning-Based Joint Local and Non-local InSAR Image Phase Filtering Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240052 |
[4] | GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292 |
[5] | LI Yansheng, ZHANG Yongjun. A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190. DOI: 10.13203/j.whugis20210652 |
[6] | JI Shunping, LUO Chong, LIU Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. DOI: 10.13203/j.whugis20200620 |
[7] | ZHANG Liqiang, LI Yang, HOU Zhengyang, LI Xingang, GENG Hao, WANG Yuebin, LI Jingwen, ZHU Panpan, MEI Jie, JIANG Yanxiao, LI Shuaipeng, XIN Qi, CUI Ying, LIU Suhong. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864. DOI: 10.13203/j.whugis20200650 |
[8] | JU Yuanzhen, XU Qiang, JIN Shichao, LI Weile, DONG Xiujun, GUO Qinghua. Automatic Object Detection of Loess Landslide Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. DOI: 10.13203/j.whugis20200132 |
[9] | PAN Yin, SHAO Zhenfeng, CHENG Tao, HE Wei. Analysis of Urban Waterlogging Influence Based on Deep Learning Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 132-138. DOI: 10.13203/j.whugis20170217 |
[10] | FAN Heng, XU Jun, DENG Yong, XIANG Jinhai. Behavior Recognition of Human Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 492-497. DOI: 10.13203/j.whugis20140110 |