GAO Zhiliang, XIE Mingli, JU Nengpan, HUANG Xichao, PENG Tao, HE Chaoyang. Multi-source Remote Sensing Dynamic Deformation Monitoring of Accumulation Landslide[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1482-1491. DOI: 10.13203/j.whugis20220149
Citation: GAO Zhiliang, XIE Mingli, JU Nengpan, HUANG Xichao, PENG Tao, HE Chaoyang. Multi-source Remote Sensing Dynamic Deformation Monitoring of Accumulation Landslide[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1482-1491. DOI: 10.13203/j.whugis20220149

Multi-source Remote Sensing Dynamic Deformation Monitoring of Accumulation Landslide

More Information
  • Received Date: July 19, 2022
  • Available Online: April 12, 2023
  • Objectives 

    The response law of ancient (old) landslides in the reservoir area is an important research topic. Previous research primarily analyzed real-time surface displacement and reservoir water level data. However, professional monitoring conditions are often lacking on most reservoir bank slopes. This complicates tracking the landslide's historical deformation. Satellite and airborne remote sensing platforms enable multi-scale, long-term monitoring of landslide deformation and damage.

    Methods 

    This study employs multi-source three-dimensional observation technologies including aerial, space-based, and terrestrial platforms to monitor the deformation and evolution of the Pubugou Hydropower Station's Hongyanzi landslide over approximately 10 years. It utilizes unmanned aerial vehicle photography (optical imaging) and light detection and ranging (LiDAR) for detailed topographic mapping and deformation analysis from 2009 to 2020. Additionally, time-series interferometric synthetic aperture radar (InSAR) technology is used to track long-term surface deformations from October 2014 to July 2020. Field investigations have identified typical deformation and failure characteristics of the landslide, incorporating geological conditions and external factors such as rainfall and reservoir water levels to analyze causal mechanisms and dynamic trends.

    Results 

    The irregularly semicircular Hongyanzi landslide spans 20-50 m in thickness, encompasses approximately 15.53 million m³ in volume, and slides at an approximate bearing of 340°. Composed of quaternary pebbled stones, silty sand, and clay, the landslide's bed slopes between 20° and 25°. Its lithology includes Emeishan Formation basalt and Yangxin Formation dolomite. Existing since 2006 or earlier, the landslide features elements like walls and steps. LiDAR imagery from 2009 clearly delineates its boundaries, though it shows no new signs of deformation or failure. Following reservoir impoundment, the reactivated landslide develops new, widening cracks along its rear edge. Post-reactivation, the landslide predominantly undergos uniform deformation, with more significant movement at the trailing edge than the leading edge, without marked acceleration. Heavy rainfall is the most significant control factor, imparting stepwise deformation characteristics to the landslide.

    Conclusions 

    A comprehensive analysis of multi-source data reveals that phenomena like the Hongyanzi landslide exhibit typical long-term, gradual, and seasonal movements. Long-term InSAR effectively captures these characteristics. Multi-stage optical remote sensing and surface point cloud data from LiDAR, after vegetation removal, enable more intuitive comparisons of macroscopic deformation across different landslide areas. Integrating this with geological assessments and field investigations allows for detailed engineering analyses to ascertain the causes, patterns, and future trends of landslide activity.

  • [1]
    Sassa K, Fukuoka H, Wang F W, et al. Dynamic Properties of Earthquake-Induced Large-Scale Rapid Landslides Within Past Landslide Masses[J]. Landslides, 2005, 2(2): 125-134.
    [2]
    夏金梧, 郭厚桢. 长江上游地区滑坡分布特征及主要控制因素探讨[J]. 水文地质工程地质, 1997, 24(1): 19-22.

    Xia Jinwu, Guo Houzhen. Distribution Characteristics and Controlling Factors of Landslides in the Upper Reaches of Yantze River[J]. Hydrogeology and Engineering Geology, 1997, 24(1): 19-22.
    [3]
    Wang H B, Xu W Y, Xu R C, et al. Hazard Assessment by 3D Stability Analysis of Landslides Due to Reservoir Impounding[J]. Landslides, 2007, 4(4): 381-388.
    [4]
    汤明高, 李松林, 许强, 等. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 2020, 41(3): 755-764.

    Tang Minggao, Li Songlin, Xu Qiang, et al. Study of Deformation Characteristics of Reservoir Landslide Based on Centrifugal Model Test[J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
    [5]
    van Asch T W J, Malet J P, Bogaard T A. The Effect of Groundwater Fluctuations on the Velocity Pattern of Slow-Moving Landslides[J]. Natural Hazards and Earth System Sciences, 2009, 9(3): 739-749.
    [6]
    Strauhal T, Zangerl C, Fellin W, et al. Structure, Mineralogy and Geomechanical Properties of Shear Zones of Deep-Seated Rockslides in Metamorphic Rocks (Tyrol, Austria)[J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 419-438.
    [7]
    李松林. 三峡库区涉水滑坡对库水位变动的变形响应及其自适应性研究[D]. 成都:成都理工大学, 2020.

    Li Songlin. Study on the Reactivation Characteristic and Deformation Self-Adaptive of Landslides in the Three Gorges Reservoir Area[D].Chengdu: Chengdu University of Technology, 2020.
    [8]
    向玲, 王世梅, 王力. 动水压力型滑坡对库水位升降作用的响应: 以三峡库区树坪滑坡为例[J]. 工程地质学报, 2014, 22(5): 876-882.

    Xiang Ling, Wang Shimei, Wang Li. Response of Typical Hydrodynamic Pressure Landslide to Reservoir Water Level Fluctuation: Shuping Landslide in Three Gorges Reservoir as an Example[J]. Journal of Engineering Geology, 2014, 22(5): 876-882.
    [9]
    Zhang Y G, Zhang Z, Xue S, et al. Stability Analysis of a Typical Landslide Mass in the Three Gorges Reservoir Under Varying Reservoir Water Levels[J].Environmental Earth Sciences,2020,79(1): 42.
    [10]
    卢博, 郭永成, 赵二平, 等. 库水位变化和降雨条件下边坡渗流特性及稳定性分析[J]. 三峡大学学报(自然科学版), 2017, 39(2): 54-59.

    Lu Bo, Guo Yongcheng, Zhao Erping, et al. Analysis of Seepage Characteristics and Stability of a Slope Under Conditions of Reservoir Water Level Fluctuation and Rainfall[J]. Journal of China Three Gorges University (Natural Sciences), 2017, 39(2): 54-59.
    [11]
    杨何. 三峡库区滑坡堆积体非饱和土—水特征测试及渗流分析[D]. 成都:成都理工大学, 2017.

    Yang He. Seepage Analysis and Unsaturated Soil Water Characteristic Test of the Landslide Mass in the Three Gorges Reservoir Area[D]. Chengdu:Chengdu University of Technology, 2017.
    [12]
    汪发武, 宋琨. 库水位涨落条件下不同结构边坡的变形破坏机制分析: 以千将坪滑坡和树坪滑坡为例[J]. 工程地质学报, 2021, 29(3): 575-582.

    Wang Fawu, Song Kun. Analysis of Deformation and Failure Mechanism of Bank Slopes with Different Structures Under Reservoir Water Level Fluctuation: Taking Qianjiangping Landslide and Shuping Landslide as Examples[J]. Journal of Engineering Geology, 2021, 29(3): 575-582.
    [13]
    Paronuzzi P, Rigo E, Bolla A. Influence of Filling–Drawdown Cycles of the Vajont Reservoir on Mt. Toc Slope Stability[J]. Geomorphology, 2013, 191: 75-93.
    [14]
    Song K, Wang F W, Yi Q L, et al. Landslide Deformation Behavior Influenced by Water Level Fluctuations of the Three Gorges Reservoir (China)[J]. Engineering Geology, 2018, 247: 58-68.
    [15]
    谭淋耘, 黄润秋, 裴向军. 库水位下降诱发的特大型顺层岩质滑坡变形特征与诱发机制[J]. 岩石力学与工程学报, 2021, 40(2): 302-314.

    Tan Linyun, Huang Runqiu, Pei Xiangjun. Deformation Characteristics and Inducing Mechanisms of a Super-Large Bedding Rock Landslide Triggered by Reservoir Water Level Decline in Three Gorges Reservoir Area[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 302-314.
    [16]
    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7): 957-966.

    Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966.
    [17]
    解明礼, 赵建军, 巨能攀, 等. 多源数据滑坡时空演化规律研究: 以黄泥坝子滑坡为例[J]. 武汉大学学报(信息科学版), 2020, 45(6): 923-932.

    Xie Mingli, Zhao Jianjun, Ju Nengpan, et al. Research on Temporal and Spatial Evolution of Landslide Based on Multisource Data: A Case Study of Huangnibazi Landslide[J]. Geomatics and Information Science of Wuhan University, 2020, 45(6): 923-932.
    [18]
    梁京涛. 高烈度地震区典型地质灾害遥感早期识别及震后演化特征研究[D].成都:成都理工大学,2018.

    Liang Jingtao. Study on the Early Remote Sensing Identification and Evolution Characteristics of Typical Geological Disaster in High Intensity Earthquake Zone[D] .Chengdu:Chengdu University of Technology, 2018.
    [19]
    唐尧, 王立娟, 马国超, 等. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报, 2019, 23(2): 252-261.

    Tang Yao,Wang Lijuan,Ma Guochao,et al.Emergency Monitoring of High-Level Landslide Disasters in Jinsha River Using Domestic Remote Sensing Satellites[J]. Journal of Remote Sensing, 2019, 23(2): 252-261.
    [20]
    张景华, 张建龙, 欧阳渊. 遥感技术在汉源县地质灾害调查中的应用[J]. 遥感信息, 2010, 25(5): 87-92.

    Zhang Jinghua, Zhang Jianlong, Ouyang Yuan. The Application of Remote Sensing Techology to Inverstigation of Geological Hazards in Hanyuan County[J]. Remote Sensing Information, 2010, 25(5): 87-92.
    [21]
    李明, 李德仁, 范登科, 等. 利用PC-SIFT的多源光学卫星影像自动配准方法[J]. 武汉大学学报(信息科学版), 2015, 40(1): 64-70.

    Li Ming, Li Deren, Fan Dengke, et al. An Automatic PC-SIFT-Based Registration of Multi-source Images from Optical Satellites[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 64-70.
    [22]
    王绚, 范宣梅, 杨帆, 等. 植被茂密山区地质灾害遥感解译方法研究[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1771-1781.

    Wang Xuan, Fan Xuanmei, Yang Fan, et al. Remote Sensing Interpretation Method of Geological Hazards in Lush Mountainous Area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1771-1781.
    [23]
    郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1538-1547.

    Guo Chen,Xu Qiang,Dong Xiujun, et al. Geohazard Recognition by Airborne LiDAR Technology in Complex Mountain Areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1538-1547.
    [24]
    李晓恩, 周亮, 苏奋振, 等. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报, 2021, 25(2): 614-629.

    Li Xiaoen, Zhou Liang, Su Fenzhen, et al. Application of InSAR Technology in Landslide Hazard: Progress and Prospects[J]. National Remote Sensing Bulletin, 2021, 25(2): 614-629.
    [25]
    戴可人, 卓冠晨, 许强, 等. 雷达干涉测量对甘肃南峪乡滑坡灾前二维形变追溯[J]. 武汉大学学报(信息科学版), 2019, 44(12): 1778-1786.

    Dai Keren,Zhuo Guanchen,Xu Qiang, et al. Tracing the Pre-failure Two-Dimensional Surface Displacements of Nanyu Landslide, Gansu Province with Radar Interferometry[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1778-1786.
  • Related Articles

    [1]LI Qingzhu, LI Zhining, ZHANG Yingtang, FAN Hongbo, YIN Gang. Integrated Vector Calibration of Magnetic Gradient Tensor System Using Nonlinear Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 714-722, 730. DOI: 10.13203/j.whugis20170161
    [2]LIU Bin, GUO Jiming, SHI Junbo, WU Dijun. A GPS Height Fitting Method Based on the EGM2008 Model and Terrain Correction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 554-558. DOI: 10.13203/j.whugis20160249
    [3]ZHAN Yinhu, ZHENG Yong, ZHANG Chao, ZHANG Zhongkai, LI Zhuyang, MA Gaofeng. Spherical Circle Fitting Algorithm and Its Application on Azimuth Determination by Observing the Moon[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1514-1519. DOI: 10.13203/j.whugis20130562
    [4]WEI Erhu, LI Zhiqiang, GONG Guangyu, ZHANG Shuai. Fitting and Prediction of Pole Motion Time Series Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1420-1424.
    [5]SHU Chanfang, LI Fei, HAO Weifeng. Geoid/Quasigeoid Fitting Based on Equivalent Point Masses[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 231-234.
    [6]ZENG Qihong, MAO Jianhua, LI Xianhua, LIU Xuefeng. Planar-Fitting Filtering Algorithm for LIDAR Points Cloud[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 25-28.
    [7]WANG Jiexian. A Method for Fitting of Conicoid in Industrial Measurement[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 47-50.
    [8]ZHANG Mengjun, SHU Hong, LIU Yan, WANG Tao. An Adaptive Thresholding Approach Based on Spatial Curved Surface Fitting[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 395-398.
    [9]ZHOU Yunyao, CAI Yaxian. Correlation Processing Techniques in Frequency-domain Calibration for Very Broadband Seismometer—Raising Sinewave Calibration Precision Under Strong Noise by Using Vertical Correlation Method[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 632-635.
    [10]GAO Wei, XU Shaoquan. Subregional Fitting and Transforming GPS Height into Normal Height[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 908-911.
  • Cited by

    Periodical cited type(4)

    1. 梁志国,梁家奕. 正弦参数拟合误差量子化阶梯分布机理分析. 计量学报. 2024(10): 1555-1561 .
    2. 宁一鹏,毕京学,姚国标,桑文刚,郭秋英. 简化磁力计非线性误差模型的快速校正算法. 测绘科学. 2021(01): 36-41+55 .
    3. 于向前,刘斯,肖池阶,曲亚楠,宗秋刚,陈鸿飞,邹鸿,施伟红,王永福,陈傲,宋思宇,高爽,邵思霈. 基于椭球拟合的三轴磁强计两步校准法. 仪表技术与传感器. 2021(04): 52-56 .
    4. 张莺莺,张晓明,高丽珍,薛羽阳,刘俊. 弹载磁测系统等效安装误差的在线标定与补偿. 计算机测量与控制. 2021(08): 158-162 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return