LI Qingquan, SHAO Chengli, WAN Jianhua, WANG Haiyin, JIANG San, YU Wenshuai. Optimized Views Photogrammetry and Ubiquitous Real 3D Data Acquisition with the Application Case in Qingdao[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1587-1597. DOI: 10.13203/j.whugis20220079
Citation: LI Qingquan, SHAO Chengli, WAN Jianhua, WANG Haiyin, JIANG San, YU Wenshuai. Optimized Views Photogrammetry and Ubiquitous Real 3D Data Acquisition with the Application Case in Qingdao[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1587-1597. DOI: 10.13203/j.whugis20220079

Optimized Views Photogrammetry and Ubiquitous Real 3D Data Acquisition with the Application Case in Qingdao

Funds: 

The Project of Qingdao Real Scene 3D Construction ZFCG2021000043

the Basic Geographic Information Data Construction Project of Qingdao High Tech Zone GXCG2020000113

the Natural Science Foundation of Guangdong Province 2020A0505100064

Shenzhen Key Project of Science and Technology Innovation JCYJ20210324120213036

More Information
  • Author Bio:

    LI Qingquan, PhD, professor, Academician of International Eurasian Academy of Sciences, Academician of Russian Academy of Engineering, specializes in dynamic and precise engineering surveying. E-mail: liqq@szu.edu.cn

  • Corresponding author:

    YU Wenshuai, PhD, associate professor. E-mail: ywsh@szu.edu.cn

  • Received Date: June 08, 2022
  • Available Online: October 17, 2022
  • Published Date: October 04, 2022
  •   Objectives  To satisfy the widely demand of 3D real scene reconstruction, a novel unmanned aerial vehicle (UAV) photogrammetric technique approach, named optimized views photogrammetry, is presented.
      Methods  In terms of the 3D rough model of the scene which obtained in various ways, optimized views photogrammetry generates initial views via stereoscopic observation sampling and selects optimal views under the constraint of observability measure, and then forms the aerial photogrammetry planning path for quadcopters. For the contradiction between large-scale application and limited endurance of UAV system, optimized views photogrammetry provides a multi-UAV collaborative survey solution with its specific path division function in the planning end. A practical application verification was performed in urban central district of Qingdao, to assess the performance of multi-UAV cooperative optimized views photogrammetry in relatively large range complicated urban scene.
      Results  The output results of real 3D reconstruction postprocessing and the detailed comparison with the model generated from oblique photogrammetry verify that, on the premise of high-quality real scene 3D output, the technical approach realizes the real scene 3D acquisition in a large range of complex space with light and small aerial photography equipment, as meanwhile and improves the efficiency through collaborative operation.
      Conclusions  With the key support of optimized views photogrammetry, it could also make an extension to the new technology application mode of ubiquitous real 3D data acquisition for multiple technical directions and application fields.
  • [1]
    李德仁, 肖雄武, 郭丙轩, 等. 倾斜影像自动空三及其在城市真三维模型重建中的应用[J]. 武汉大学学报·信息科学版, 2016, 41(6): 711-721 doi: 10.13203/j.whugis20160099

    Li Deren, Xiao Xiongwu, Guo Bingxuan, et al. Oblique Image Based Automatic Aerotriangulation and Its Application in 3D City Model Reconstruction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 711-721 doi: 10.13203/j.whugis20160099
    [2]
    Zhang X J, Zhao P C, Hu Q W, et al. A UAV-Based Panoramic Oblique Photogrammetry (POP) Approach Using Spherical Projection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 198-219 doi: 10.1016/j.isprsjprs.2019.11.016
    [3]
    Herbort S, Wöhler C. An Introduction to Image-Based 3D Surface Reconstruction and a Survey of Photometric Stereo Methods[J]. 3D Research, 2011, 2(3): 4 doi: 10.1007/3DRes.03(2011)4
    [4]
    李清泉. 动态精密工程测量[M]. 北京: 科学出版社, 2021

    Li Qingquan. Dynamic Precision Engineering Survey[M]. Beijing: Science Press, 2021
    [5]
    Colomina I, Molina P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 79-97 doi: 10.1016/j.isprsjprs.2014.02.013
    [6]
    Xiang T Z, Xia G S, Zhang L P. Mini-Unmanned Aerial Vehicle-Based Remote Sensing: Techniques, Applications, and Prospects[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(3): 29-63 doi: 10.1109/MGRS.2019.2918840
    [7]
    Nex F, Remondino F. UAV for 3D Mapping Applications: A Review[J]. Applied Geomatics, 2014, 6(1): 1-15 doi: 10.1007/s12518-013-0120-x
    [8]
    Liu L G, Xia X, Sun H, et al. Object-Aware Guidance for Autonomous Scene Reconstruction[J]. ACM Transactions on Graphics, 2018, 37(4): 104
    [9]
    Koch T, Körner M, Fraundorfer F. Automatic and Semantically-Aware 3D UAV Flight Planning for Image-Based 3D Reconstruction[J]. Remote Sensing, 2019, 11(13): 1550 doi: 10.3390/rs11131550
    [10]
    Smith N, Moehrle N, Goesele M, et al. Aerial Path Planning for Urban Scene Reconstruction[J]. ACM Transactions on Graphics, 2018, 37(6): 1-15
    [11]
    Hepp B, Nießner M, Hilliges O. Plan3D: Viewpoint and Trajectory Optimization for Aerial Multi-View Stereo Reconstruction[J]. ACM Transactions on Graphics, 2019, 38(1): 1-17 https://arxiv.org/pdf/1705.09314.pdf
    [12]
    Zhou X H, Xie K, Huang K, et al. Offsite Aerial Path Planning for Efficient Urban Scene Reconstruction[J]. ACM Transactions on Graphics, 2020, 39(6): 192
    [13]
    李清泉, 黄惠, 姜三, 等. 优视摄影测量方法及精度分析[J]. 测绘学报, 2022, 51(6): 996-1007 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206018.htm

    Li Qingquan, Huang Hui, Jiang San, et al. Optimized Views Photogrammetry and Its Precision Analysis[J]. Acta Geodaetica et Cartographica Si-nica, 2022, 51(6): 996-1007 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206018.htm
    [14]
    陶鹏杰, 何佳男, 席可, 等. 基于旋翼无人机的贴近摄影测量方法: CN110006407A[P]. 2020-04-10

    Tao Pengjie, He Jianan, Xi Ke, et al. Nap-of-the-Object Photogrammetry Method Based on Rotor Unmanned Aerial Vehicle: CN110006407A[P]. 2020-04-10
    [15]
    张剑清, 胡安文. 多基线摄影测量前方交会及精度分析[J]. 武汉大学学报·信息科学版, 2007, 32(10): 847-851 http://ch.whu.edu.cn/article/id/1996

    Zhang Jianqing, Hu Anwen. Method and Precision Analysis of Multi-Baseline Photogrammetry[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 847-851 http://ch.whu.edu.cn/article/id/1996
    [16]
    柯涛, 张祖勋, 张剑清. 旋转多基线数字近景摄影测量[J]. 武汉大学学报·信息科学版, 2009, 34(1): 44-47 http://ch.whu.edu.cn/article/id/1135

    Ke Tao, Zhang Zuxun, Zhang Jianqing. Panning and Multi-Baseline Digital Close-Range Photogrammetry[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 44-47 http://ch.whu.edu.cn/article/id/1135
    [17]
    Corsini M, Cignoni P, Scopigno R. Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(6): 914-924 doi: 10.1109/TVCG.2012.34
    [18]
    姜三, 陈武, 李清泉, 等. 无人机影像增量式运动恢复结构研究进展[J]. 武汉大学学报·信息科学版, 2022, DOI: 10.13203/j.whugis20220130

    Jiang San, Chen Wu, Li Qingquan, et al. Recent Research of Incremental Structure from Motion for Unmanned Aerial Vehicle Images[J]. Geomatics and Information Science of Wuhan University, 2022, DOI: 10.13203/j.whugis20220130
    [19]
    姜三, 许志海, 张峰, 等. 面向无人机倾斜影像的高效SfM重建方案[J]. 武汉大学学报·信息科学版, 2019, 44(8): 1153-1161 doi: 10.13203/j.whugis20180030

    Jiang San, Xu Zhihai, Zhang Feng, et al. Solution for Efficient SfM Reconstruction of Oblique UAV Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1153-1161 doi: 10.13203/j.whugis20180030
    [20]
    Fuhrmann S, Goesele M. Floating Scale Surface Reconstruction[J]. ACM Transactions on Graphics, 2014, 33(4): 1-11
    [21]
    Helsgaun K. Solving the Equality Generalized Traveling Salesman Problem Using the Lin-Kernighan-Helsgaun Algorithm[J]. Mathematical Programming Computation, 2015, 7(3): 269-287 doi: 10.1007/s12532-015-0080-8
    [22]
    刘经南, 高柯夫. 智能时代测绘与位置服务领域的挑战与机遇[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1506-1517 doi: 10.13203/j.whugis20170324

    Liu Jingnan, Gao Kefu. Challenges and Opportunities for Mapping and Surveying and Location Based Service in the Age of Intelligence[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1506-1517 doi: 10.13203/j.whugis20170324

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return