LI Qingquan, SHAO Chengli, WAN Jianhua, WANG Haiyin, JIANG San, YU Wenshuai. Optimized Views Photogrammetry and Ubiquitous Real 3D Data Acquisition with the Application Case in Qingdao[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1587-1597. DOI: 10.13203/j.whugis20220079
Citation: LI Qingquan, SHAO Chengli, WAN Jianhua, WANG Haiyin, JIANG San, YU Wenshuai. Optimized Views Photogrammetry and Ubiquitous Real 3D Data Acquisition with the Application Case in Qingdao[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1587-1597. DOI: 10.13203/j.whugis20220079

Optimized Views Photogrammetry and Ubiquitous Real 3D Data Acquisition with the Application Case in Qingdao

Funds: 

The Project of Qingdao Real Scene 3D Construction ZFCG2021000043

the Basic Geographic Information Data Construction Project of Qingdao High Tech Zone GXCG2020000113

the Natural Science Foundation of Guangdong Province 2020A0505100064

Shenzhen Key Project of Science and Technology Innovation JCYJ20210324120213036

More Information
  • Author Bio:

    LI Qingquan, PhD, professor, Academician of International Eurasian Academy of Sciences, Academician of Russian Academy of Engineering, specializes in dynamic and precise engineering surveying. E-mail: liqq@szu.edu.cn

  • Corresponding author:

    YU Wenshuai, PhD, associate professor. E-mail: ywsh@szu.edu.cn

  • Received Date: June 08, 2022
  • Available Online: October 17, 2022
  • Published Date: October 04, 2022
  •   Objectives  To satisfy the widely demand of 3D real scene reconstruction, a novel unmanned aerial vehicle (UAV) photogrammetric technique approach, named optimized views photogrammetry, is presented.
      Methods  In terms of the 3D rough model of the scene which obtained in various ways, optimized views photogrammetry generates initial views via stereoscopic observation sampling and selects optimal views under the constraint of observability measure, and then forms the aerial photogrammetry planning path for quadcopters. For the contradiction between large-scale application and limited endurance of UAV system, optimized views photogrammetry provides a multi-UAV collaborative survey solution with its specific path division function in the planning end. A practical application verification was performed in urban central district of Qingdao, to assess the performance of multi-UAV cooperative optimized views photogrammetry in relatively large range complicated urban scene.
      Results  The output results of real 3D reconstruction postprocessing and the detailed comparison with the model generated from oblique photogrammetry verify that, on the premise of high-quality real scene 3D output, the technical approach realizes the real scene 3D acquisition in a large range of complex space with light and small aerial photography equipment, as meanwhile and improves the efficiency through collaborative operation.
      Conclusions  With the key support of optimized views photogrammetry, it could also make an extension to the new technology application mode of ubiquitous real 3D data acquisition for multiple technical directions and application fields.
  • [1]
    李德仁, 肖雄武, 郭丙轩, 等. 倾斜影像自动空三及其在城市真三维模型重建中的应用[J]. 武汉大学学报·信息科学版, 2016, 41(6): 711-721 doi: 10.13203/j.whugis20160099

    Li Deren, Xiao Xiongwu, Guo Bingxuan, et al. Oblique Image Based Automatic Aerotriangulation and Its Application in 3D City Model Reconstruction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 711-721 doi: 10.13203/j.whugis20160099
    [2]
    Zhang X J, Zhao P C, Hu Q W, et al. A UAV-Based Panoramic Oblique Photogrammetry (POP) Approach Using Spherical Projection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 198-219 doi: 10.1016/j.isprsjprs.2019.11.016
    [3]
    Herbort S, Wöhler C. An Introduction to Image-Based 3D Surface Reconstruction and a Survey of Photometric Stereo Methods[J]. 3D Research, 2011, 2(3): 4 doi: 10.1007/3DRes.03(2011)4
    [4]
    李清泉. 动态精密工程测量[M]. 北京: 科学出版社, 2021

    Li Qingquan. Dynamic Precision Engineering Survey[M]. Beijing: Science Press, 2021
    [5]
    Colomina I, Molina P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 79-97 doi: 10.1016/j.isprsjprs.2014.02.013
    [6]
    Xiang T Z, Xia G S, Zhang L P. Mini-Unmanned Aerial Vehicle-Based Remote Sensing: Techniques, Applications, and Prospects[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(3): 29-63 doi: 10.1109/MGRS.2019.2918840
    [7]
    Nex F, Remondino F. UAV for 3D Mapping Applications: A Review[J]. Applied Geomatics, 2014, 6(1): 1-15 doi: 10.1007/s12518-013-0120-x
    [8]
    Liu L G, Xia X, Sun H, et al. Object-Aware Guidance for Autonomous Scene Reconstruction[J]. ACM Transactions on Graphics, 2018, 37(4): 104
    [9]
    Koch T, Körner M, Fraundorfer F. Automatic and Semantically-Aware 3D UAV Flight Planning for Image-Based 3D Reconstruction[J]. Remote Sensing, 2019, 11(13): 1550 doi: 10.3390/rs11131550
    [10]
    Smith N, Moehrle N, Goesele M, et al. Aerial Path Planning for Urban Scene Reconstruction[J]. ACM Transactions on Graphics, 2018, 37(6): 1-15
    [11]
    Hepp B, Nießner M, Hilliges O. Plan3D: Viewpoint and Trajectory Optimization for Aerial Multi-View Stereo Reconstruction[J]. ACM Transactions on Graphics, 2019, 38(1): 1-17 https://arxiv.org/pdf/1705.09314.pdf
    [12]
    Zhou X H, Xie K, Huang K, et al. Offsite Aerial Path Planning for Efficient Urban Scene Reconstruction[J]. ACM Transactions on Graphics, 2020, 39(6): 192
    [13]
    李清泉, 黄惠, 姜三, 等. 优视摄影测量方法及精度分析[J]. 测绘学报, 2022, 51(6): 996-1007 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206018.htm

    Li Qingquan, Huang Hui, Jiang San, et al. Optimized Views Photogrammetry and Its Precision Analysis[J]. Acta Geodaetica et Cartographica Si-nica, 2022, 51(6): 996-1007 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202206018.htm
    [14]
    陶鹏杰, 何佳男, 席可, 等. 基于旋翼无人机的贴近摄影测量方法: CN110006407A[P]. 2020-04-10

    Tao Pengjie, He Jianan, Xi Ke, et al. Nap-of-the-Object Photogrammetry Method Based on Rotor Unmanned Aerial Vehicle: CN110006407A[P]. 2020-04-10
    [15]
    张剑清, 胡安文. 多基线摄影测量前方交会及精度分析[J]. 武汉大学学报·信息科学版, 2007, 32(10): 847-851 http://ch.whu.edu.cn/article/id/1996

    Zhang Jianqing, Hu Anwen. Method and Precision Analysis of Multi-Baseline Photogrammetry[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 847-851 http://ch.whu.edu.cn/article/id/1996
    [16]
    柯涛, 张祖勋, 张剑清. 旋转多基线数字近景摄影测量[J]. 武汉大学学报·信息科学版, 2009, 34(1): 44-47 http://ch.whu.edu.cn/article/id/1135

    Ke Tao, Zhang Zuxun, Zhang Jianqing. Panning and Multi-Baseline Digital Close-Range Photogrammetry[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 44-47 http://ch.whu.edu.cn/article/id/1135
    [17]
    Corsini M, Cignoni P, Scopigno R. Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(6): 914-924 doi: 10.1109/TVCG.2012.34
    [18]
    姜三, 陈武, 李清泉, 等. 无人机影像增量式运动恢复结构研究进展[J]. 武汉大学学报·信息科学版, 2022, DOI: 10.13203/j.whugis20220130

    Jiang San, Chen Wu, Li Qingquan, et al. Recent Research of Incremental Structure from Motion for Unmanned Aerial Vehicle Images[J]. Geomatics and Information Science of Wuhan University, 2022, DOI: 10.13203/j.whugis20220130
    [19]
    姜三, 许志海, 张峰, 等. 面向无人机倾斜影像的高效SfM重建方案[J]. 武汉大学学报·信息科学版, 2019, 44(8): 1153-1161 doi: 10.13203/j.whugis20180030

    Jiang San, Xu Zhihai, Zhang Feng, et al. Solution for Efficient SfM Reconstruction of Oblique UAV Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1153-1161 doi: 10.13203/j.whugis20180030
    [20]
    Fuhrmann S, Goesele M. Floating Scale Surface Reconstruction[J]. ACM Transactions on Graphics, 2014, 33(4): 1-11
    [21]
    Helsgaun K. Solving the Equality Generalized Traveling Salesman Problem Using the Lin-Kernighan-Helsgaun Algorithm[J]. Mathematical Programming Computation, 2015, 7(3): 269-287 doi: 10.1007/s12532-015-0080-8
    [22]
    刘经南, 高柯夫. 智能时代测绘与位置服务领域的挑战与机遇[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1506-1517 doi: 10.13203/j.whugis20170324

    Liu Jingnan, Gao Kefu. Challenges and Opportunities for Mapping and Surveying and Location Based Service in the Age of Intelligence[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1506-1517 doi: 10.13203/j.whugis20170324
  • Related Articles

    [1]MEI Changsong, HUANG Haijun, JIANG Ke, XIA Lei, PAN Xiong. Application of Discrete Grey Model Based on Stepwise Ratio Sequence in the Satellite Clock Offset Prediction[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1154-1160. DOI: 10.13203/j.whugis20190291
    [2]ZHANG Chunsen, ZHANG Menghui, GUO Bingxuan, PENG Zhe. Adaptive Fast Mesh Refinement of 3D Reconstruction Based on Image Information[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 411-418. DOI: 10.13203/j.whugis20190161
    [3]YANG Sheng, LI Xuejun, ZHU Shibing. The Reverse Positioning Refining Algorithm for Auto-matching of the Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1083-1087.
    [4]ZHANG Weixing, LIU Wanke, GONG Xiaoying, WANG Fuhong. Influence of Solar Radiation Perturbation Model Refinement on Autonomous Orbit Determination of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 700-704.
    [5]CAO Jinshan, YUAN Xiuxiao. Refinement of RPCs Based on Systematic Error Compensation for Virtual Grid[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 185-189.
    [6]TIAN Fengmin, XU Dingjie, LI Ning. A Node Refinement Algorithm for Inserting Feature Constraints in Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 358-361.
    [7]ZHANG Quande, ZHANG Yanping, ZHANG Peng, CHEN Xianjun. Some Issues in Regional Geoid Improvement[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 94-96.
    [8]SUN Haiyan, WU Yun. Semiparametric Regression and Model Refining[J]. Geomatics and Information Science of Wuhan University, 2002, 27(2): 172-174,207.
    [9]WEI Ziqing. Height Modernization Issue[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 377-380.
    [10]YUAN Xiuxiao, CHEN Xiaoming. GPS-supported Aerotriangulation with Ambiguity Resolution on the Fly[J]. Geomatics and Information Science of Wuhan University, 2000, 25(6): 476-481.
  • Cited by

    Periodical cited type(10)

    1. 刘凯,姜三,李清泉,江万寿. 局部得分检测约束的深度特征提取方法. 测绘科学. 2024(04): 137-146 .
    2. 宋庆林. 井字航线与交叉环绕航线融合拍摄对实景三维建模精度的影响分析. 福建建筑. 2024(07): 132-135 .
    3. 宗慧琳,袁希平,甘淑,张晓伦,梁昌献,赵振峰. 改进AKAZE算法的泥石流区无人机影像特征匹配. 测绘通报. 2023(02): 91-96+103 .
    4. 杨阿华,张强,杨阿锋,常鑫. 一种航空影像的三维重建全局优化方法. 测绘科学. 2023(11): 125-135 .
    5. 高莎,袁希平,甘淑,胡琳,毕瑞,李绕波,罗为东. 集成SIFT算法与检测模型优化的UAV影像匹配方法. 光谱学与光谱分析. 2022(05): 1497-1503 .
    6. 姚永祥,段平,李佳,王云川. 联合对数极坐标描述与位置尺度特征的无人机影像匹配算法. 武汉大学学报(信息科学版). 2022(08): 1271-1278 .
    7. 王凯奇,方军,王振霖,郭海宾,杨振升. 交叉环绕航线下的城市级复杂建筑物实景三维建模. 测绘通报. 2022(09): 80-85 .
    8. 陈武,姜三,李清泉,江万寿. 无人机影像增量式运动恢复结构研究进展. 武汉大学学报(信息科学版). 2022(10): 1662-1674 .
    9. 岳娟,高思莉,李范鸣,蔡能斌. 具有近似仿射尺度不变特征的快速图像匹配. 光学精密工程. 2020(10): 2349-2359 .
    10. 柯舒. DMCⅢ数字航摄仪在常益长铁路断面采集中的应用. 铁道勘察. 2019(02): 14-17 .

    Other cited types(3)

Catalog

    Article views (1370) PDF downloads (291) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return