SUN Haiyan, WU Yun. Semiparametric Regression and Model Refining[J]. Geomatics and Information Science of Wuhan University, 2002, 27(2): 172-174,207.
Citation: SUN Haiyan, WU Yun. Semiparametric Regression and Model Refining[J]. Geomatics and Information Science of Wuhan University, 2002, 27(2): 172-174,207.

Semiparametric Regression and Model Refining

More Information
  • Received Date: September 19, 2001
  • Published Date: February 04, 2002
  • When the functional model of a surveying adjustment problem contains model errors or the measurements inherit systematic errors,especially when this kind of errors can hardly be described by a few parameters,conventional adjustment method of least squares can not correctly identify this kind of errors which will affect estimations of the unknown parameters badly and sometimes even give a false conclusion.This paper solves this problem effectively by introducing the semiparametric estimate model into surveying adjustment theory.Actually the semiparametric model is the conventional G-M linear model adding a nonparametric.Because there are more unknown parameters being added,the method of least squares can not provide a unique solution.This paper presents a semiparametric adjustment method fit for the general case.The calculation method is discussed and the corresponding formulas are presented.Finally,a simulated adjustment problem is constructed to explain the method.The results of the semiparametric model and G-M model are compared,which demonstrates that the model errors or the systematic errors of the observations can be detected correctly by the semiparametric estimate method.
  • Related Articles

    [1]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [2]LIU Lilong, CHEN Jun, HUANG Liangke, WU Pituan, QIN Xuyuan, CAI Chenghui. A Sophisticated Klobuchar Model Based on the Holt Exponential Smoothing Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 599-604. DOI: 10.13203/j.whugis20150751
    [3]DUAN Gonghao, NIU Ruiqing, ZHAO Yannan, ZHANG Kaixiang, YAO Dengkui. Rainfall-induced Landslide Prediction Based on Dynamic Exponential Smoothing Model[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 958-962. DOI: 10.13203/j.whugis20140276
    [4]TAO Xiaojing, ZHU Jianjun, TIAN Yumiao. Analysis of Factors Influencing Smoothing Parameter in Semiparametric Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 298-301.
    [5]ZHAO Hongrui, TANG Zhongshi, LI Xiaowen. A Regularization Parameter Choice Method on Linear Quantitative Remote Sensing Inversion[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 531-535.
    [6]WANG Zhenjie, LU Xiushan. Separating Systematical Errors in GPS Baselines Using Semi-parametric Model[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 316-318.
    [7]DING Shijun, TAO Benzao. Semiparametric Regression Model With Natural Spline and Systematic Error Estimation[J]. Geomatics and Information Science of Wuhan University, 2004, 29(11): 964-967.
    [8]WANG Zhenjie, OU Jikun, QU Guoqing, HAN Baomin. Determining the Smoothing Parameter in Semi-parametric Model Using L-curve Method[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 651-653.
    [9]WU Yun, SUN Haiyan, MA Xuezhong. Semiparametric Regression with Cubic Spline[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 398-101. DOI: 10.13203/j.whugis2004.05.006
    [10]LIU Jingnan, ZHAO Qile, ZHANG Xiaohong. Geometric Orbit Determination of CHAMP Satellite and Dynamic Models' Compensation During Orbit Smoothing[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 1-6.

Catalog

    Article views (1040) PDF downloads (315) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return