ZHANG Chunsen, ZHANG Menghui, GUO Bingxuan, PENG Zhe. Adaptive Fast Mesh Refinement of 3D Reconstruction Based on Image Information[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 411-418. DOI: 10.13203/j.whugis20190161
Citation: ZHANG Chunsen, ZHANG Menghui, GUO Bingxuan, PENG Zhe. Adaptive Fast Mesh Refinement of 3D Reconstruction Based on Image Information[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 411-418. DOI: 10.13203/j.whugis20190161

Adaptive Fast Mesh Refinement of 3D Reconstruction Based on Image Information

Funds: 

Shaanxi Natural Science Foundation 2018JM5103

More Information
  • Author Bio:

    ZHANG Chunsen, PhD, professor, specializes in photogrammetry and remote sensing. E-mail: zhchunsen@aliyun.com

  • Received Date: February 28, 2019
  • Published Date: March 04, 2020
  • A method of balancing the optimize accuracy and efficiency of the mesh to achieve mesh adaptive fast optimization is proposed to solve the problem of low efficiency of mesh optimization in the existing 3D reconstruction based on images. After calculating the initial value of the vertex gradient along the triangular normal vector based on the image gray information, the mesh of each triangle is marked differently according to the different results:The active triangles and the lazy triangles, through the active in the mesh is refined to abandon the optimization of the lazy triangles in exchanging for improvement of efficiency. The optimization of the efficiency is fast improving while obtaining better mesh vertices. We choose classical images church and fountain data in the 3D reconstruction experiment of computer vision and the widely used of unmanned aerial vehicle (UAV) images in photogrammetry to reconstruct mesh to refine. The mesh model optimization time and precision comparison results show that this algorithm can greatly improve the mesh optimize efficiency to obtain the 3D model faster.
  • [1]
    李德仁, 肖雄武, 郭丙轩, 等.倾斜影像自动空三及其在城市真三维模型重建中的应用[J].武汉大学学报·信息科学版, 2016, 41(6):711-721 http://ch.whu.edu.cn/CN/abstract/abstract5454.shtml

    Li Deren, Xiao Xiongwu, Guo Bingxuan, et al. Oblique Image Based Automatic Aero-triangulation and Its Application in 3D City Model Reconstruction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6):711-721 http://ch.whu.edu.cn/CN/abstract/abstract5454.shtml
    [2]
    Delaunoy A, Prados E.Gradient Flows for Optimizing Triangular Mesh-Based Surfaces:Applications to 3D Reconstruction Problems Dealing with Visibility[J]. International Journal of Computer Vision, 2011, 95(2):100-123 doi: 10.1007/s11263-010-0408-9
    [3]
    张春森, 张萌萌, 郭丙轩.影像信息驱动的三角网格模型优化方法[J].测绘学报, 2018, 47(7):959-967 http://d.old.wanfangdata.com.cn/Periodical/chxb201807009

    Zhang Chunsen, Zhang Mengmeng, Guo Bingxuan. Refinement of 3D Mesh Model Driven by the Image Information[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7):959-967 http://d.old.wanfangdata.com.cn/Periodical/chxb201807009
    [4]
    Sinha S N, Pollefeys M. Multi-view Reconstruction Using Photo-Consistency and Exact Silhouette Constraints: A Maximum-Flow Formulation[C]. IEEE International Conference on Computer Vision, Beijing, China, 2005
    [5]
    Furukawa Y, Ponce J. Carved Visual Hulls for Image-Based Modeling[C]. European Conference on Computer Vision, Graz, Austria, 2006
    [6]
    谭仁春, 杜清运, 杨品福, 等.地形建模中不规则三角网构建的优化算法研究[J].武汉大学学报·信息科学版, 2006, 31(5):436-439 http://ch.whu.edu.cn/CN/abstract/abstract2458.shtml

    Tan Renchun, Du Qingyun, Yang Pinfu, et al. Optimized Triangulation Arithmetic in Modeling Terrain[J]. Geomatices and Information Science of Wuhan University, 2006, 31(5):436-439 http://ch.whu.edu.cn/CN/abstract/abstract2458.shtml
    [7]
    Wu Haijun, Chen Zhiming. Uniform Convergence of Multigrid V-cycle on Adaptively Refined Finite Element Meshes for Second Order Elliptic Problems[J]. Science in China (Series A:Mathematics), 2006, 49(10):1405-1429 doi: 10.1007/s11425-006-2005-5
    [8]
    Esteban C H, Schmitt F. Silhouette and Stereo Fusion for 3D Object Modeling[J]. Computer Vision and Image Understanding, 2004, 96(3):367-392 doi: 10.1016/j.cviu.2004.03.016
    [9]
    Tylecek R, Sara R. Refinement of Surface Mesh for Accurate Multi-view Restriction[J]. The International Journal of Virtual Reality, 2010, 9(1):45-54 doi: 10.20870/IJVR.2010.9.1.2761
    [10]
    戴雪峰, 熊汉江, 龚健雅.一种三维城市模型多纹理自动合并方法[J].武汉大学学报·信息科学版, 2015, 40(3):347-352 http://ch.whu.edu.cn/CN/abstract/abstract3208.shtml

    Dai Xuefeng, Xiong Hanjiang, Gong Jianya. A Multi-texture Automatic Merging Approach for 3D City Models[J].Geomatics and Information Science of Wuhan University, 2015, 40(3):347-352 http://ch.whu.edu.cn/CN/abstract/abstract3208.shtml
    [11]
    Esteban C H. Stereo and Silhouette Fusion for 3D Object Modeling from Uncalibrated Images Under Circular Motion[J]. Computer Vision and Image Understanding, 2004, 96(3):367-392 doi: 10.1016/j.cviu.2004.03.016
    [12]
    朱红, 宋东伟, 谭海, 等. Delaunay三角网优化下的小面元遥感影像配准算法[J].信号处理, 2016, 32(9):1032-1038 http://d.old.wanfangdata.com.cn/Periodical/xhcl201609004

    Zhu Hong, Song Dongwei, Tan Hai, et al. A Tiny Facet Primitive Remote Sensing Image Registration Algorithm Based on Optimized Delaunay Triangulation[J]. Journal of Signal Processing, 2016, 32(9):1032-1038 http://d.old.wanfangdata.com.cn/Periodical/xhcl201609004
    [13]
    Delaunoy A, Prados E, Gargallo P, et al.Minimizing the Multi-view Stereo Reprojection Error for Triangular Surface Meshes[C]. British Machine Vision Conference, the University of Warwick, UK, 2008
    [14]
    Jean-Philippe P, Renaud K, Olivier F. Multi-view Stereo Reconstruction and Scene Flow Estimation with a Global Image-Based Matching Score[J]. International Journal of Computer Vision, 2007, 72(2):179-193 doi: 10.1007/s11263-006-8671-5
    [15]
    Yuan Hongxing, Li Guo, Li Yu, et al. Multi-view Reconstruction Using Band Graph-Cuts[J]. Journal of Computer Aided Design and Computer Graphics, 2010, 22(4):605-611 doi: 10.3724/SP.J.1089.2010.10601
    [16]
    Le-Jeng A S. Mesh Rrefinement Based on Euler Encoding[C].The International Conference on Shape Modeling and Applications, Cambridge, MA, USA, 2005
    [17]
    Furukawa Y, Ponce J. Accurate, Dense, and Robust Multiview Stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8):1362-1376 doi: 10.1109/TPAMI.2009.161
    [18]
    Strecha C, van Gooll F. Wide Baseline Stereo from Multiple Views: A Probabilistic Account[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D C, 2004
    [19]
    Pons J P, Boissonnat J D. Delaunay Deformable Models: Topology-Adaptive Meshes Based on the Restricted Delaunay Triangulation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007
    [20]
    Pons J P, Keriven R, Faugeras O. Multi-view Stereo Reconstruction and Scene Flow Estimation with a Global Image-Based Matching Score[J].International Journal of Computer Vision, 2007, 72(2):179-193 doi: 10.1007/s11263-006-8671-5
    [21]
    Hoang-Hiep V, Renaud K, Jean-Philippe P, et al. High Accuracy and Visibility-Consistent Dense Multi-view Stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5):889-901 doi: 10.1109/TPAMI.2011.172
  • Related Articles

    [1]CAI Xianhua, LIU Kaili, HU Zhuoliang, ZHANG Yuan. An Algorithm for Constructing Road Network Using Block Polygon Topology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1170-1177. DOI: 10.13203/j.whugis20190348
    [2]YANG Wei, AI Tinghua. Extracting Arterial Road Polygon from OpenStreetMap Data Based on Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1725-1731. DOI: 10.13203/j.whugis20160294
    [3]ZHANG Hao, WU Fang, GONG Xianyong, XU Junkui, ZHANG Juntao. A Parallel Factor-Based Method of Arterial Two-Lane Roads Recognition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1123-1130. DOI: 10.13203/j.whugis20150122
    [4]WANG Xiao, QIAN Haizhong, LIU Hailong, HE Haiwei, CHEN Jingnan. A Hierarchical and Iterative Road Network Matching Method by Using Road Classification[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1072-1078. DOI: 10.13203/j.whugis20140441
    [5]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [6]LI Fei, LUAN Xuechen, YANG Bisheng, LI Qiuping. Automatic Topology Maintenance Approach for High-level Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 729-733. DOI: 10.13203/j.whugis20140115
    [7]LUAN Xuechen, YANG Bisheng, ZHANG Yunfei. Structural Hierarchy Analysis of Streets Based on Complex Network Theory[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 728-732.
    [8]LI Qingquan, ZENG Zhe, YANG Bisheng, LIBijun. Betweenness Centrality Analysis for Urban Road Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 37-41.
    [9]ZHU Qing, LI Yuan. Review of Road Network Models[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 471-476.
    [10]DENG Hongyan, WU Fang, ZHAI Renjian. A Generalization Model of Road Networks Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 164-167.
  • Cited by

    Periodical cited type(5)

    1. 庞琪沛,吴云龙,徐景田,史绪国,张毅. 甘肃积石山Ms 6.2地震深部构造特征和动力学过程. 武汉大学学报(信息科学版). 2025(02): 356-367 .
    2. 段国勇,马如梦. 三峡库区灰岩浸泡损伤-孔隙水压耦合模型研究. 水利水电技术(中英文). 2024(09): 178-186 .
    3. 胡锦涛,谢军,危自根,金超. 三峡库区秭归段浅层速度结构和孕震环境. 地震学报. 2023(02): 223-233 .
    4. 李路顺,汪泽成,肖安成,胡安平,陈友智,王芊芊. 扬子板块北缘新元古代盆地结构与马槽园群归属研究. 地学前缘. 2022(06): 291-304 .
    5. 韩飞,苏艳华,王泽. 三峡地区流动重力差分变化及其特征分析. 测绘科学. 2021(04): 1-5+19 .

    Other cited types(1)

Catalog

    Article views (2721) PDF downloads (193) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return