HU Yufeng, LI Zhenhong, WANG Le, CHEN Bo, ZHU Wu, ZHANG Shuangcheng, DU Jiantao, ZHANG Xuesong, YANG Jing, ZHOU Meiling, LIU Zhenjiang, WANG Sisi, MIAO Chen, ZHANG Lianchong, PENG Jianbing. Rapid Interpretation and Analysis of the 2022 Eruption of Hunga Tonga-Hunga Ha'apai Volcano with Integrated Remote Sensing Techniques[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 242-251. DOI: 10.13203/j.whugis20220050
Citation: HU Yufeng, LI Zhenhong, WANG Le, CHEN Bo, ZHU Wu, ZHANG Shuangcheng, DU Jiantao, ZHANG Xuesong, YANG Jing, ZHOU Meiling, LIU Zhenjiang, WANG Sisi, MIAO Chen, ZHANG Lianchong, PENG Jianbing. Rapid Interpretation and Analysis of the 2022 Eruption of Hunga Tonga-Hunga Ha'apai Volcano with Integrated Remote Sensing Techniques[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 242-251. DOI: 10.13203/j.whugis20220050

Rapid Interpretation and Analysis of the 2022 Eruption of Hunga Tonga-Hunga Ha'apai Volcano with Integrated Remote Sensing Techniques

Funds: 

The National Key Research and Development Program of China 2020YFC1512000

Shaanxi Province Science and Technology Innovation Team Program 2021TD-51

the Natural Science Research Project of Shaanxi Province 2020JQ-350

ESA-MOST DRAGON-5 Project 59339

More Information
  • Author Bio:

    HU Yufeng, PhD, lecturer, specializes in remote sensing of environment with GNSS.E-mail: yfhu@chd.edu.cn

  • Corresponding author:

    LI Zhenhong, PhD, professor. E-mail:Zhenhong.Li@chd.edu.cn

  • Received Date: January 21, 2022
  • Available Online: January 26, 2022
  • Published Date: February 04, 2022
  •   Objectives  On 14th and 15th January 2022, the Hunga Tonga-Hunga Ha'apai (HTHH) underwater volcano in Tonga in the South Pacific Ocean violently erupted and caused a tsunami, which has attracted widespread international attention. In this paper, we attempted to rapidly investigate this once-in-a-millennium massive event using integrated remote sensing techniques.
      Methods  We comprehensively used multi-temporal satellite optical images, radar images, global navigation satellite system (GNSS) observations and other datasets to quickly interpret and analyze the volcanic eruption process and its impacts. The damage assessment in parts of Tonga was also performed. Based on the integrated remote sensing techniques, we presented a technical framework for the rapid interpretation and analysis of volcanic eruptions, which comprises of six components, namely multi-source data acquisition, geomorphology monitoring, deformation monitoring, environmental response detection, damage assessment and recovery decision.
      Results  Our results show that the HTHH underwater volcano in Tonga had exhibited obvious surface displacements in the satellite radar line of sight direction with a maximum accumulated displacement of 6.0 cm since June 2020, and erupted since around 22nd December 2021. During the volcanic eruption, the local magnetic field and ionosphere exhibited obvious abnormal signals, and the continuous GNSS data in Tonga suggested clear surface displacements with an uplift up to 50.2 cm. Most areas of Tonga were blanketed in ash, but it appeared that, in northern part of Tonga's capital, little damage was observed in the coastlines and the main buildings and roads remained intact.
      Conclusions  This study shows how to use integrated remote sensing techniques to quickly respond to underwater volcanic eruptions, including the topography evolution of the HTHH volcano and the damage assessment of its eruption. It is believed that the remote sensing integrated technical framework shall not only contribute to the speedy recovery and reconstruction of the society after the HTHH volcanic eruption, but also to the mitigation of future geohazard events.
  • [1]
    Arculus R. Deeply Explosive[J]. Nature Geoscience, 2011, 4(11): 737-738 doi: 10.1038/ngeo1306
    [2]
    Peckover R S, Buchanan D J, Ashby D E T F. Fuel-Coolant Interactions in Submarine Vulcanism[J]. Nature, 1973, 245(5424): 307-308 doi: 10.1038/245307a0
    [3]
    Klein A.Volcano Eruption in Tonga was a Once-in-a-Millennium Event[EB/OL].[2022-01-17].https://www.newscientist.com/article/2304822-volcano-eruption-in-tonga-was-a-once-in-a-millennium-event
    [4]
    Ewart A, Collerson K D, Regelous M, et al. Geochemical Evolution Within the Tonga-Kermadec-Lau Arc-Back-Arc Systems: The Role of Varying Mantle Wedge Composition in Space and Time[J]. Journal of Petrology, 1998, 39(3): 331-368 doi: 10.1093/petroj/39.3.331
    [5]
    Bevis M, Taylor F W, Schutz B E, et al. Geodetic Observations of very Rapid Convergence and Back-Arc Extension at the Tonga Arc[J]. Nature, 1995, 374(6519): 249-251 doi: 10.1038/374249a0
    [6]
    Satake K. Double Trouble at Tonga[J]. Nature, 2010, 466(7309): 931-932 doi: 10.1038/466931a
    [7]
    Contreras-Reyes E, Grevemeyer I, Watts A B, et al. Deep Seismic Structure of the Tonga Subduction Zone: Implications for Mantle Hydration, Tectonic Erosion, and Arc Magmatism[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B10): B10103 doi: 10.1029/2011JB008434
    [8]
    李原鸿, 黄方, 于慧敏, 等. 加勒比海小安德列斯岛弧Kick'emJenny海底火山岩的斜长石成分环带: 示踪大洋岛弧岩浆房的演化[J]. 岩石学报, 2016, 32(2): 605-616

    Li Yuanhong, Huang Fang, Yu Huimin, et al. Plagioclase Zoning in Submarine Volcano Kick'em Jenny, Lesser Antilles Arc: Insights into Magma Evolution Processes in Oceanic Arc Magma Chamber[J]. Acta Petrologica Sinica, 2016, 32(2): 605-616
    [9]
    张勇, 许力生, 陈运泰. 2009年3月19日汤加地震破裂过程快速反演[J]. 地震学报, 2009, 31(2): 226-229 doi: 10.3321/j.issn:0253-3782.2009.02.013

    Zhang Yong, Xu Lisheng, Chen Yuntai. Quick Inversion of the Rupture Process of the 2009 March 19 Tonga Earthquake[J]. Acta Seismologica Sinica, 2009, 31(2): 226-229 doi: 10.3321/j.issn:0253-3782.2009.02.013
    [10]
    鲁人齐, Suppe John, 何登发, 等. 深部俯冲板片三维构造重建及其几何学、运动学研究: 以汤加-克马德克地区俯冲板片为例[J]. 地球物理学报, 2013, 56(11): 3837-3845 doi: 10.6038/cjg20131125

    Lu Renqi, Suppe J, He Dengfa, et al. Deep Subducting Slab Reconstruction and Its Geometry, Kinematics: A Case Study for the Tonga-Kermadec Slab from Tomography[J]. Chinese Journal of Geophysics, 2013, 56(11): 3837-3845 doi: 10.6038/cjg20131125
    [11]
    Bryan W B, Stice G D, Geology Ewart A., Petrography, and Geochemistry of the Volcanic Islands of Tonga[J]. Journal of Geophysical Research, 1972, 77(8): 1566-1585 doi: 10.1029/JB077i008p01566
    [12]
    Vaughan R G, Webley P W. Satellite Observations of a Surtseyan Eruption: Hunga Ha'apai, Tonga[J]. Journal of Volcanology and Geothermal Research, 2010, 198(1/2): 177-186
    [13]
    Garvin J B, Slayback D A, Ferrini V, et al. Monitoring and Modeling the Rapid Evolution of Earth's Newest Volcanic Island: Hunga Tonga Hunga Ha'apai (Tonga) Using High Spatial Resolution Satellite Observations[J]. Geophysical Research Letters, 2018, 45(8): 3445-3452 doi: 10.1002/2017GL076621
    [14]
    Bohnenstiehl D R, Dziak R P, Matsumoto H, et al. Underwater Acoustic Records from the March 2009 Eruption of Hunga Ha'apai-Hunga Tonga Volcano in the Kingdom of Tonga[J]. Journal of Volcanology and Geothermal Research, 2013, 249: 12-24 doi: 10.1016/j.jvolgeores.2012.08.014
  • Cited by

    Periodical cited type(9)

    1. 陈嘉琦,陈亮,林巍. GNSS钟差估计中的两种测站选取策略分析. 地理空间信息. 2022(11): 64-69 .
    2. 刘赞,刘晓鹏,陈西宏,谢泽东,刘强. 对流层散射无源监视系统最优布局方法. 国防科技大学学报. 2021(01): 103-108 .
    3. 胡超,王中元,王潜心,饶鹏文. 一种改进的BDS-2/BDS-3联合精密定轨系统偏差处理模型. 武汉大学学报(信息科学版). 2021(03): 360-370 .
    4. 张磊. 基于超精密激光辅助的运动训练图像去噪处理模型研究. 激光杂志. 2021(04): 114-120 .
    5. 胡超,王潜心,毛亚. 一种基于DOP值的GNSS超快速观测轨道精化模型. 武汉大学学报(信息科学版). 2020(01): 28-37 .
    6. 杨鸿毅,王潜心,毛亚,胡超,何义磊. BDS-3观测数据质量分析及精密定轨. 导航与控制. 2019(06): 55-61 .
    7. 毛亚,王潜心,胡超,何义磊. 北斗在轨卫星广播星历精度分析. 宇航学报. 2018(09): 1013-1021 .
    8. 何颖,马戎,权绎弘,郭强. 标志点定向系统几何精度因子的计算方法. 测控技术. 2018(12): 66-69 .
    9. 毛亚,王潜心,于伟宣,胡超,张铭彬. 多卫星导航系统钟差解算效率分析. 金属矿山. 2017(10): 59-62 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return