HU Yufeng, LI Zhenhong, WANG Le, CHEN Bo, ZHU Wu, ZHANG Shuangcheng, DU Jiantao, ZHANG Xuesong, YANG Jing, ZHOU Meiling, LIU Zhenjiang, WANG Sisi, MIAO Chen, ZHANG Lianchong, PENG Jianbing. Rapid Interpretation and Analysis of the 2022 Eruption of Hunga Tonga-Hunga Ha'apai Volcano with Integrated Remote Sensing Techniques[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 242-251. DOI: 10.13203/j.whugis20220050
Citation: HU Yufeng, LI Zhenhong, WANG Le, CHEN Bo, ZHU Wu, ZHANG Shuangcheng, DU Jiantao, ZHANG Xuesong, YANG Jing, ZHOU Meiling, LIU Zhenjiang, WANG Sisi, MIAO Chen, ZHANG Lianchong, PENG Jianbing. Rapid Interpretation and Analysis of the 2022 Eruption of Hunga Tonga-Hunga Ha'apai Volcano with Integrated Remote Sensing Techniques[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 242-251. DOI: 10.13203/j.whugis20220050

Rapid Interpretation and Analysis of the 2022 Eruption of Hunga Tonga-Hunga Ha'apai Volcano with Integrated Remote Sensing Techniques

Funds: 

The National Key Research and Development Program of China 2020YFC1512000

Shaanxi Province Science and Technology Innovation Team Program 2021TD-51

the Natural Science Research Project of Shaanxi Province 2020JQ-350

ESA-MOST DRAGON-5 Project 59339

More Information
  • Author Bio:

    HU Yufeng, PhD, lecturer, specializes in remote sensing of environment with GNSS.E-mail: yfhu@chd.edu.cn

  • Corresponding author:

    LI Zhenhong, PhD, professor. E-mail:Zhenhong.Li@chd.edu.cn

  • Received Date: January 21, 2022
  • Available Online: January 26, 2022
  • Published Date: February 04, 2022
  •   Objectives  On 14th and 15th January 2022, the Hunga Tonga-Hunga Ha'apai (HTHH) underwater volcano in Tonga in the South Pacific Ocean violently erupted and caused a tsunami, which has attracted widespread international attention. In this paper, we attempted to rapidly investigate this once-in-a-millennium massive event using integrated remote sensing techniques.
      Methods  We comprehensively used multi-temporal satellite optical images, radar images, global navigation satellite system (GNSS) observations and other datasets to quickly interpret and analyze the volcanic eruption process and its impacts. The damage assessment in parts of Tonga was also performed. Based on the integrated remote sensing techniques, we presented a technical framework for the rapid interpretation and analysis of volcanic eruptions, which comprises of six components, namely multi-source data acquisition, geomorphology monitoring, deformation monitoring, environmental response detection, damage assessment and recovery decision.
      Results  Our results show that the HTHH underwater volcano in Tonga had exhibited obvious surface displacements in the satellite radar line of sight direction with a maximum accumulated displacement of 6.0 cm since June 2020, and erupted since around 22nd December 2021. During the volcanic eruption, the local magnetic field and ionosphere exhibited obvious abnormal signals, and the continuous GNSS data in Tonga suggested clear surface displacements with an uplift up to 50.2 cm. Most areas of Tonga were blanketed in ash, but it appeared that, in northern part of Tonga's capital, little damage was observed in the coastlines and the main buildings and roads remained intact.
      Conclusions  This study shows how to use integrated remote sensing techniques to quickly respond to underwater volcanic eruptions, including the topography evolution of the HTHH volcano and the damage assessment of its eruption. It is believed that the remote sensing integrated technical framework shall not only contribute to the speedy recovery and reconstruction of the society after the HTHH volcanic eruption, but also to the mitigation of future geohazard events.
  • [1]
    Arculus R. Deeply Explosive[J]. Nature Geoscience, 2011, 4(11): 737-738 doi: 10.1038/ngeo1306
    [2]
    Peckover R S, Buchanan D J, Ashby D E T F. Fuel-Coolant Interactions in Submarine Vulcanism[J]. Nature, 1973, 245(5424): 307-308 doi: 10.1038/245307a0
    [3]
    Klein A.Volcano Eruption in Tonga was a Once-in-a-Millennium Event[EB/OL].[2022-01-17].https://www.newscientist.com/article/2304822-volcano-eruption-in-tonga-was-a-once-in-a-millennium-event
    [4]
    Ewart A, Collerson K D, Regelous M, et al. Geochemical Evolution Within the Tonga-Kermadec-Lau Arc-Back-Arc Systems: The Role of Varying Mantle Wedge Composition in Space and Time[J]. Journal of Petrology, 1998, 39(3): 331-368 doi: 10.1093/petroj/39.3.331
    [5]
    Bevis M, Taylor F W, Schutz B E, et al. Geodetic Observations of very Rapid Convergence and Back-Arc Extension at the Tonga Arc[J]. Nature, 1995, 374(6519): 249-251 doi: 10.1038/374249a0
    [6]
    Satake K. Double Trouble at Tonga[J]. Nature, 2010, 466(7309): 931-932 doi: 10.1038/466931a
    [7]
    Contreras-Reyes E, Grevemeyer I, Watts A B, et al. Deep Seismic Structure of the Tonga Subduction Zone: Implications for Mantle Hydration, Tectonic Erosion, and Arc Magmatism[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B10): B10103 doi: 10.1029/2011JB008434
    [8]
    李原鸿, 黄方, 于慧敏, 等. 加勒比海小安德列斯岛弧Kick'emJenny海底火山岩的斜长石成分环带: 示踪大洋岛弧岩浆房的演化[J]. 岩石学报, 2016, 32(2): 605-616

    Li Yuanhong, Huang Fang, Yu Huimin, et al. Plagioclase Zoning in Submarine Volcano Kick'em Jenny, Lesser Antilles Arc: Insights into Magma Evolution Processes in Oceanic Arc Magma Chamber[J]. Acta Petrologica Sinica, 2016, 32(2): 605-616
    [9]
    张勇, 许力生, 陈运泰. 2009年3月19日汤加地震破裂过程快速反演[J]. 地震学报, 2009, 31(2): 226-229 doi: 10.3321/j.issn:0253-3782.2009.02.013

    Zhang Yong, Xu Lisheng, Chen Yuntai. Quick Inversion of the Rupture Process of the 2009 March 19 Tonga Earthquake[J]. Acta Seismologica Sinica, 2009, 31(2): 226-229 doi: 10.3321/j.issn:0253-3782.2009.02.013
    [10]
    鲁人齐, Suppe John, 何登发, 等. 深部俯冲板片三维构造重建及其几何学、运动学研究: 以汤加-克马德克地区俯冲板片为例[J]. 地球物理学报, 2013, 56(11): 3837-3845 doi: 10.6038/cjg20131125

    Lu Renqi, Suppe J, He Dengfa, et al. Deep Subducting Slab Reconstruction and Its Geometry, Kinematics: A Case Study for the Tonga-Kermadec Slab from Tomography[J]. Chinese Journal of Geophysics, 2013, 56(11): 3837-3845 doi: 10.6038/cjg20131125
    [11]
    Bryan W B, Stice G D, Geology Ewart A., Petrography, and Geochemistry of the Volcanic Islands of Tonga[J]. Journal of Geophysical Research, 1972, 77(8): 1566-1585 doi: 10.1029/JB077i008p01566
    [12]
    Vaughan R G, Webley P W. Satellite Observations of a Surtseyan Eruption: Hunga Ha'apai, Tonga[J]. Journal of Volcanology and Geothermal Research, 2010, 198(1/2): 177-186
    [13]
    Garvin J B, Slayback D A, Ferrini V, et al. Monitoring and Modeling the Rapid Evolution of Earth's Newest Volcanic Island: Hunga Tonga Hunga Ha'apai (Tonga) Using High Spatial Resolution Satellite Observations[J]. Geophysical Research Letters, 2018, 45(8): 3445-3452 doi: 10.1002/2017GL076621
    [14]
    Bohnenstiehl D R, Dziak R P, Matsumoto H, et al. Underwater Acoustic Records from the March 2009 Eruption of Hunga Ha'apai-Hunga Tonga Volcano in the Kingdom of Tonga[J]. Journal of Volcanology and Geothermal Research, 2013, 249: 12-24 doi: 10.1016/j.jvolgeores.2012.08.014
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views PDF downloads Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return