KANG Mengjun, YE Lei, ZHU Jun, WANG Mengqi, DU Qingyun, WANG Mingjun. An Improved Map Transformation Algorithm Considering the Balance of Features Density in Cartographical Region[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2096-2104. DOI: 10.13203/j.whugis20220022
Citation: KANG Mengjun, YE Lei, ZHU Jun, WANG Mengqi, DU Qingyun, WANG Mingjun. An Improved Map Transformation Algorithm Considering the Balance of Features Density in Cartographical Region[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2096-2104. DOI: 10.13203/j.whugis20220022

An Improved Map Transformation Algorithm Considering the Balance of Features Density in Cartographical Region

Funds: 

Fund of Beijing Key Laboratory of Urban Spatial Information Engineering 20210211

More Information
  • Author Bio:

    KANG Mengjun, PhD, associate professor, majors in spatial information visualizing, spatial-decision modeling.E-mail: mengjunk@whu.edu.cn

  • Corresponding author:

    WANG Mingjun, PhD, lecturer. E-mail: dawnson.wang@263.net

  • Received Date: January 06, 2022
  • Available Online: January 06, 2023
  • Published Date: December 04, 2022
  •   Objectives  In the case of uneven distribution of map features, the density difference breaks the visual balance and reduces the beauty of the map. A large number of spatial features are concentrated in the small area, resulting in the contradiction between the display of features and the size of the area. Map details are not prominent, which increases difficulties in obtaining spatial information and is not conducive to decision analysis. The uneven distribution of feature density in mapping area increases the difficulty of map expression. Conventional map expression cannot solve the problem of visual imbalance.
      Methods  Based on Gastner-Newman cartogram algorithm, this paper proposes a map transformation algorithm that balances the feature density and achieve consistent public perception. Various cartograms can be generated through five steps: Designing deformation unit scales, configuring density weight combination of features, applying linear diffusion equation, constructing deformation grids and mapping discrete control points.
      Results  Taking Qingxiu district of Nanning city, China as the research area, we select two scale deformation units of sub-district and custom grid, and configure density weights with different combinations of point of interest and road network geometry features to generate various cartograms. The deformation measurement values of the deformation map are calculated respectively. After cognitive experiments, 56 questionnaires were obtained. Regarding the morphological control of the administrative map of Qingxiu District in Nanning, the parameters configurations should be controlled as in Sperimeter > 0.975, Sperimeter area ratio > 0.961 and Sshape ratio > 0.966. In this way, public cognition can be consistent.
      Conclusions  This study provides a new idea to solve the problem of uneven density of map features. The deformed map reaches visual balance.The area where the original features are dense increases while the area where the features are sparse decreases. By adjusting the deformation weight parameters to maintain the consistency of public map cognition. Subsequently, we will further study how to determine the optimal parameter combination to achieve the optimal deformation expression and cognitive effect.
  • [1]
    冯涛, 岳志兰, 梁发宏, 等. 专题地图设计辅助案例库建设的若干问题[J]. 测绘科学, 2016, 41(11): 156-159 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201611030.htm

    Feng Tao, Yue Zhilan, Liang Fahong, et al. Several Issues on the Case Base Construction Aided for the Thematic Maps Design[J]. Science of Surveying and Mapping, 2016, 41(11): 156-159 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201611030.htm
    [2]
    李士锋. 对象平衡理论的地图制图表达[D]. 北京: 中国地质大学(北京), 2018

    Li Shifeng. Cartographic Representation of Object Balance Theory[D]. Beijing: China University of Geosciences, 2018
    [3]
    高晓蓉, 闫浩文, 禄小敏, 等. 利用"计算区"进行建筑物短边结构识别和渐进式化简[J]. 武汉大学学报·信息科学版, 2021, 46(11): 1782-1790 doi: 10.13203/j.whugis20200698

    Gao Xiaorong, Yan Haowen, Lu Xiaomin, et al. Recognition and Progressive Simplification of Short-Edge Structure of Buildings Using Calculation Regions[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1782-1790 doi: 10.13203/j.whugis20200698
    [4]
    毋河海. 凸壳原理在点群目标综合中的应用[J]. 测绘工程, 1997, 6(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC199701000.htm

    Wu Hehai. Principle of Convex Hull and Its Applications in Generalization of Grouped Point Objects[J]. Engineering of Surveying and Mapping, 1997, 6(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC199701000.htm
    [5]
    艾廷华, 刘耀林. 保持空间分布特征的群点化简方法[J]. 测绘学报, 2002, 31(2): 175-181 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200202017.htm

    Ai Tinghua, Liu Yaolin. A Method of Point Cluster Simplification with Spatial Distribution Properties Preserved[J]. Acta Geodaetica et Cartographic Sinica, 2002, 31(2): 175-181 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200202017.htm
    [6]
    邓红艳, 武芳, 钱海忠, 等. 基于遗传算法的点群目标选取模型[J]. 中国图象图形学报, 2003, 8(8): 970-976 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200308021.htm

    Deng Hongyan, Wu Fang, Qian Haizhong, et al. A Model of Point Cluster Selection Based on Genetic Algorithms[J]. Journal of Image and Graphics, 2003, 8(8): 970-976 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200308021.htm
    [7]
    郭庆胜. 空间推理与渐进式地图综合[M]. 武汉: 武汉大学出版社, 2007

    Guo Qingsheng. Spatial Reasoning and Progressive Map Synthesis[M]. Wuhan: Wuhan University Press, 2007
    [8]
    刘万增, 陆辰妮, 霍亮, 等. 最优信息熵约束的居民地点状要素选取方法[J]. 武汉大学学报·信息科学版, 2021, 46(8): 1178-1185 doi: 10.13203/j.whugis20190305

    Liu Wanzeng, Lu Chenni, Huo Liang, et al. Selection Method of Residential Point Features Constrained by Optimal Information Entropy[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1178-1185 doi: 10.13203/j.whugis20190305
    [9]
    陈波, 武芳, 钱海忠. 道路网自动选取方法研究[J]. 中国图象图形学报, 2008, 13(12): 2388-2393 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200812023.htm

    Chen Bo, Wu Fang, Qian Haizhong. Study on Road Networks? Auto-Selection Algorithms[J]. Journal of Image and Graphics, 2008, 13(12): 2388-2393 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200812023.htm
    [10]
    邓红艳, 武芳, 翟仁健, 等. 基于遗传算法的道路网综合模型[J]. 武汉大学学报·信息科学版, 2006, 31(2): 164-167 http://ch.whu.edu.cn/article/id/2394

    Deng Hongyan, Wu Fang, Zhai Renjian, et al. A Generalization Model of Road Networks Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 164-167 http://ch.whu.edu.cn/article/id/2394
    [11]
    陈军, 胡云岗, 赵仁亮, 等. 道路数据缩编更新的自动综合方法研究[J]. 武汉大学学报·信息科学版, 2007, 32(11): 1022-1027 http://ch.whu.edu.cn/article/id/2038

    Chen Jun, Hu Yungang, Zhao Renliang, et al. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027 http://ch.whu.edu.cn/article/id/2038
    [12]
    Karnick P, Cline D, Jeschke S, et al. Route Visualization Using Detail Lenses[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(2): 235-247
    [13]
    王俪颖, 遆鹏, 喻崇湖, 等. 顾及形变控制的小屏幕变比例尺交通路线图生成方法[J]. 地球信息科学学报, 2017, 19(9): 1245-1252 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201709017.htm

    Wang Liying, Ti Peng, Yu Chonghu, et al. Generation of Variable-Scale Route Maps with Consideration of Distortion Reduction for Small Display Sizes[J]. Journal of Geo⁃Information Science, 2017, 19(9): 1245-1252 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201709017.htm
    [14]
    陈谊, 赵云芳, 杜晓敏. 变形统计地图构建方法综述[J]. 系统仿真学报, 2016, 28(9): 1970-1978

    Chen Yi, Zhao Yunfang, Du Xiaomin. Overview of Cartogram Algorithm[J]. Journal of System Simulation, 2016, 28(9): 1970-1978
    [15]
    Hennig B D. Rediscovering the World: Gridded Cartograms of Human and Physical Space[D]. Sheffield: University of Sheffield, 2011
    [16]
    Panse C, North S C, Keim D A. Medial-Axis-Based Cartograms[J]. IEEE Computer Graphicsand Applications, 2005, 25(3): 60-68
    [17]
    王丽娜. Cartogram自动构建方法与应用研究[D]. 郑州: 信息工程大学, 2018

    Wang Lina. Research on Automatic Construction Method and Application of Cartogram[D]. Zhengzhou: Information Engineering University, 2018
    [18]
    冯跃, 鲁春霞, 马蓓蓓. 京津冀地区粮食供需的空间格局变化特征[J]. 资源科学, 2009, 31(4): 566-573 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200904010.htm

    Feng Yue, Lu Chunxia, Ma Beibei. Spatial Pattern Changes of Grain Supply and Demand in Beijing-Tianjin-Hebei Region[J]. Resources Science, 2009, 31(4): 566-573 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200904010.htm
    [19]
    Houle B, Holt J, Gillespie C, et al. Use of Density-Equalizing Cartograms to Visualize Trends and Disparities in State-Specific Prevalence of Obesity: 1996-2006[J]. American Journal of Public Health, 2009, 99(2): 308-312
    [20]
    张珣, 钟耳顺, 张小虎, 等. 一种尺度效应指数修正的格网数据示意地图制图算法[J]. 武汉大学学报·信息科学版, 2015, 40(8): 1100-1104 doi: 10.13203/j.whugis20130370

    Zhang Xun, Zhong Ershun, Zhang Xiaohu, et al. A Modified Algorithm to Construct Gridded Area Cartograms by Scale Effect Index[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1100-1104 doi: 10.13203/j.whugis20130370
    [21]
    Lawal O, Arokoyu S B. Visualizing Spatial Distribution of Vulnerable Groups and Their Exposure to PM2.5 Using Cartograms[J]. International Journal of Extensive Research, 2014, 3: 1-9
    [22]
    赵光龙. 中国高等教育资源配置空间分布研究[D]. 上海: 华东师范大学, 2014

    Zhao Guanglong. The Research of China's Higher Education Resource Allocation in Spatial Distribution[D]. Shanghai: East China Normal University, 2014
    [23]
    Reyes J J. The Use of Cartograms in School Cartography[M]//Cham: Springer, 2014
    [24]
    吴康, 龙瀛, 杨宇. 京津冀与长江三角洲的局部收缩: 格局、类型与影响因素识别[J]. 现代城市研究, 2015, 30(9): 26-35 https://www.cnki.com.cn/Article/CJFDTOTAL-XDCS201509005.htm

    Wu Kang, Long Ying, Yang Yu. Urban Shrinkage in the Beijing-Tianjin-Hebei Region and Yangtze River Delta: Pattern, Trajectory and Factors[J]. Modern Urban Research, 2015, 30(9): 26-35 https://www.cnki.com.cn/Article/CJFDTOTAL-XDCS201509005.htm
    [25]
    Gastner M T, Newman M E J. Diffusion-Based Method for Producing Density Equalizing Maps[J]. arXiv, 2004, DOI: 0401102
    [26]
    Lang S, Blaschke T. Landschaftsanalyse Mit GIS[M]//Stuttgart : Ulmer Verlag, 2007
    [27]
    Peter B. Measures for the Generalization of Polygonal Maps with Categorical Data[C]. The 4th ICA Workshop on Progress in Automated Map Generalization, Beijing, China, 2001
    [28]
    Imre A R. Compactness Versus Interior-to-Edge Ratio; Two Approaches for Habitat's Ranking[J]. Acta Biotheoretica, 2006, 54(1): 21-26
  • Related Articles

    [1]TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254
    [2]LI Yongtao, ZHAO Ang, LI Jianwen, CHE Tongyu, PAN Lin, CHEN Chen. Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78. DOI: 10.13203/j.whugis20190286
    [3]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [4]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [5]WANG Zemin, CHE Guowei, AN Jiachun. Comprehensive Observation and Analysis of Weddell Sea Anomaly in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1421-1427. DOI: 10.13203/j.whugis20150270
    [6]NIE Wenfeng, HU Wusheng, PAN Shuguo, SONG Yubing. )Extraction of Regional Ionospheric TEC from GPS Dual Observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1022-1027. DOI: 10.13203/j.whugis20130046
    [7]TANG Jun, YAO Yibin, CHEN Peng, ZHANG Shun. Prediction Models of Ionospheric TEC Improved by EMD Method[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 408-411.
    [8]CHEN Peng, YAO Yibin, WU Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270.
    [9]LIN Jian, WU Yun, ZHU Fuying. Ionosphere TEC Anomalous Disturbance of Pre-seism[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 975-978.
    [10]MENG Yang, WANG Zemin, E Dongchen. Ionopsheric TEC Anomalies of Pre-Earthquake Based on GPS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 81-84.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(28)

Catalog

    Article views (525) PDF downloads (101) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return