Citation: | WANG Li, LI Yi, SHU Bao, TIAN Yunqing, WANG Bingjie. RAIM Performance Analysis of Three Typical Low-Orbit Augmentation Constellations Combined with BDS Applications[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 678-686. DOI: 10.13203/j.whugis20210567 |
[1] |
Yang Y X, Mao Y, Sun B J. Basic Performance and Future Developments of BeiDou Global Navigation Satellite System[J]. Satellite Navigation, 2020(1): 1.
|
[2] |
陈金平. GPS完善性增强研究[D]. 郑州: 信息工程大学, 2001.
Chen Jinping. Research of GPS Integrity Augmentation[D]. Zhengzhou: Information Engineering University, 2001.
|
[3] |
战兴群, 苏先礼. GNSS完好性监测及辅助性能增强技术[M]. 北京: 科学出版社, 2016.
Zhan Xingqun, Su Xianli. GNSS Integrity Monitoring and Assisted Performance Enhancement Technology[M]. Beijing: Science Press, 2016.
|
[4] |
王尔申, 杨迪, 宏晨, 等. ARAIM技术研究进展[J]. 电信科学, 2019, 35(8): 128-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201908014.htm
Wang Ershen, Yang Di, Hong Chen, et al. Research Progress of ARAIM Technology[J]. Telecommunications Science, 2019, 35(8): 128-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201908014.htm
|
[5] |
Yang Y X, Xu J Y. GNSS Receiver Autonomous Integrity Monitoring (RAIM) Algorithm Based on Robust Estimation[J]. Geodesy and Geodynamics, 2016, 7(2): 117-123. doi: 10.1016/j.geog.2016.04.004
|
[6] |
罗思龙. GNSS用户级完好性监测算法理论、性能评估及优化研究[D]. 西安: 长安大学, 2019.
Luo Silong. Research on Theory, Performance Assessment and Optimization of GNSS User-Based Integrity Monitoring Algorithm[D]. Xi'an: Chang'an University, 2019.
|
[7] |
周雁. 北斗三号全球导航卫星系统建成开通新闻发布会召开[EB/OL]. [2021-10-19]. http://www.beidou.gov.cn/yw/xwzx/202008/t20200803_20935.html.
Zhou Yan. Press Conference for the Completion of BeiDou-3 Global Satellite Navigation System[EB/OL]. [2021-10-19]. http://www.beidou.gov.cn/yw/xwzx/202008/t20200803_20935.html.
|
[8] |
GPS-Galileo Working Group C ARAIM Technical Subgroup Milestone 3 Report[EB/OL]. [2021-10-19]. https://www.gps.gov/policy/cooperation/europe/2016/working-group-c/ARAIM-milestone-3-report.pdf.
|
[9] |
刘一, 谷守周, 边少锋, 等. 一种基于观测数据集密度中心的新型RAIM算法[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1900-1906. doi: 10.13203/j.whugis20210234
Liu Yi, Gu Shouzhou, Bian Shaofeng, et al. A New RAIM Algorithm Based on the Density Center of Observed Dataset[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1900-1906. doi: 10.13203/j.whugis20210234
|
[10] |
张亚彬, 王利, 范丽红, 等. ISC参数改正的RAIM故障检测和识别[J]. 测绘科学技术学报, 2018, 35(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201801011.htm
Zhang Yabin, Wang Li, Fan Lihong, et al. Detection and Identification of RAIM Fault Based on Inter-Signal Correction Parameters[J]. Journal of Geomatics Science and Technology, 2018, 35(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201801011.htm
|
[11] |
王煜东, 许承东, 郑学恩. 基于斜率加权的最小二乘RAIM算法研究[J]. 电光与控制, 2020, 27(3): 13-16. doi: 10.3969/j.issn.1671-637X.2020.03.003
Wang Yudong, Xu Chengdong, Zheng Xue'en. An RAIM Algorithm Based on Slope-Weighted Least Square Method[J]. Electronics Optics & Control, 2020, 27(3): 13-16. doi: 10.3969/j.issn.1671-637X.2020.03.003
|
[12] |
韩清清, 王利, 罗思龙, 等. 改进的Hatch滤波平滑算法及RAIM性能分析[J]. 测绘科学技术学报, 2019, 36(3): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201903006.htm
Han Qingqing, Wang Li, Luo Silong, et al. An Improved Hatch Filtering Smoothing Algorithm and RAIM Performance Analysis[J]. Journal of Geomatics Science and Technology, 2019, 36(3): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201903006.htm
|
[13] |
赵昂, 杨元喜, 许扬胤, 等. 一种使用抗差估计的保护水平重构方法[J]. 武汉大学学报(信息科学版), 2021, 46(1): 96-102. doi: 10.13203/j.whugis20190043
Zhao Ang, Yang Yuanxi, Xu Yangyin, et al. A Method of Protection Level Reconstruction Based on Robust Estimation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 96-102. doi: 10.13203/j.whugis20190043
|
[14] |
韩清清, 王利, 罗思龙, 等. ARAIM算法的风险概率优化分配[J]. 测绘学报, 2021, 50(12): 1751-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202112011.htm
Han Qingqing, Wang Li, Luo Silong, et al. Optimal Allocation of Risk Probability Based on ARAIM Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1751-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202112011.htm
|
[15] |
王文博, 张鹏飞, 徐承东, 等. 基于BDS/GPS的奇偶矢量RAIM算法研究[C]//第七届中国卫星导航年会, 中国, 长沙, 2016.
Wang Wenbo, Zhang Pengfei, Xu Chendong, et al. The Research on Parity Vector RAIM Algorithm Based on BDS/GPS Multi-constellation[C]// The 7th China Satellite Navigation Conference, Changsha, China, 2016.
|
[16] |
田云青, 王利, 舒宝, 等. 北斗系统ARAIM可用性评估[J]. 测绘学报, 2021, 50(7): 879-890. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202107004.htm
Tian Yunqing, Wang Li, Shu Bao, et al. Evaluation of the Availability of BDS ARAIM[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 879-890. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202107004.htm
|
[17] |
王磊, 陈锐志, 李德仁, 等. 珞珈一号低轨卫星导航增强系统信号质量评估[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2191-2196. doi: 10.13203/j.whugis20180413
Wang Lei, Chen Ruizhi, Li Deren, et al. Quality Assessment of the LEO Navigation Augmentation Signals from Luojia-1A Satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191-2196. doi: 10.13203/j.whugis20180413
|
[18] |
卢鋆, 张弓, 申建华, 等. 低轨增强星座对卫星导航系统能力提升分析[J]. 卫星应用, 2020(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYG202002015.htm
Lu Yun, Zhang Gong, Shen Jianhua, et al. Analysis on the Improvement of Satellite Navigation System Capability by LEO Enhanced Constellation[J]. Satellite Application, 2020(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYG202002015.htm
|
[19] |
张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201909002.htm
Zhang Xiaohong, Ma Fujian. Review of the Development of LEO Navigation-Augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201909002.htm
|
[20] |
王文博, 徐颖. 基于低轨星座增强的北斗系统RAIM可用性分析[J]. 大地测量与地球动力学, 2020, 40(11): 1158-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202011011.htm
Wang Wenbo, Xu Ying. Analysis of RAIM Availability Based on LEO-Augmented BDS[J]. Journal of Geodesy and Geodynamics, 2020, 40(11): 1158-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202011011.htm
|
[21] |
卢广毅, 赵春梅, 邵银星. 基于RAIM算法的低轨增强GNSS定位故障检测[C]//第十一届中国卫星导航年会, 中国, 成都, 2020.
Lu Guangyi, Zhao Chunmei, Shao Yinxing. Low-Track Enhanced GNSS Positioning Fault Detection Based on RAIM Algorithm[C] // The 11th China Satellite Navigation Conference, Chengdu, China, 2020.
|
[22] |
SpaceX. To Build 4 000 Broadband Satellites in Seattle[EB/OL]. [2021-10-19]. https://spacenews.com/spacex-opening-seattle-plant-to-build-4000-broadband-satellites/.
|
[23] |
蒙艳松, 边朗, 王瑛, 等. 基于"鸿雁"星座的全球导航增强系统[J]. 国际太空, 2018(10): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201810005.htm
Meng Yansong, Bian Lang, Wang Ying, et al. Global Navigation Augmentation System Based on Hongyan Satellite Constellation[J]. Space International, 2018(10): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201810005.htm
|
[24] |
马福建. 低轨星座增强GNSS精密定位关键技术研究[D]. 武汉: 武汉大学, 2018.
Ma Fujian. Research on the Key Technologies for GNSS Precise Positioning Augmented with LEO Constellation[D]. Wuhan: Wuhan University, 2018.
|
[25] |
陈雨, 赵灵峰, 刘会杰, 等. 低轨Walker星座构型演化及维持策略分析[J]. 宇航学报, 2019, 40(11): 1296-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201911006.htm
Chen Yu, Zhao Lingfeng, Liu Huijie, et al. Analysis of Configuration and Maintenance Strategy of LEO Walker Constellation[J]. Journal of Astronautics, 2019, 40(11): 1296-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201911006.htm
|
[26] |
关梅倩, 焦文海, 贾小林, 等. 基于导航增强的低轨卫星星座设计[C]// 第九届中国卫星导航年会, 中国, 哈尔滨, 2018.
Guan Meiqian, Jiao Wenhai, Jia Xiaolin, et al. LEO Satellite Constellation Design Based on Navigation Augmentation[C] // The 9th China Satellite Navigation Conference, Harbin, China, 2018.
|
[27] |
沈叶锋, 张一. 基于通导一体化的低轨卫星导航增强系统设计[C]. 第十一届中国卫星导航年会, 中国, 成都, 2020.
Shen Yefeng, Zhang Yi. Design for LEO Satellite Navigation Augmentation System Based on Integrated Communication and Navigation[C]//The 11th China Satellite Navigation Conference, Chengdu, China, 2020.
|
[28] |
Overland J E, Wang M Y. When will the Summer Arctic be Nearly Sea Ice Free?[J]. Geophysical Research Letters, 2013, 40(10): 2097-2101.
|
[29] |
Li X X, Ma F J, Li X, et al. LEO Constellation-Augmented Multi-GNSS for Rapid PPP Convergence[J]. Journal of Geodesy, 2019, 93(5): 749-764.
|
[30] |
Ma F J, Zhang X H, Li X X, et al. Hybrid Constellation Design Using a Genetic Algorithm for a LEO-Based Navigation Augmentation System[J]. GPS Solutions, 2020, 24(2): 62.
|
[1] | ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273 |
[2] | GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071 |
[3] | LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714 |
[4] | YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517 |
[5] | ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182 |
[6] | ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119 |
[7] | ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275 |
[8] | LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062 |
[9] | LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107 |
[10] | FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114 |