WANG Li, LI Yi, SHU Bao, TIAN Yunqing, WANG Bingjie. RAIM Performance Analysis of Three Typical Low-Orbit Augmentation Constellations Combined with BDS Applications[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 678-686. DOI: 10.13203/j.whugis20210567
Citation: WANG Li, LI Yi, SHU Bao, TIAN Yunqing, WANG Bingjie. RAIM Performance Analysis of Three Typical Low-Orbit Augmentation Constellations Combined with BDS Applications[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 678-686. DOI: 10.13203/j.whugis20210567

RAIM Performance Analysis of Three Typical Low-Orbit Augmentation Constellations Combined with BDS Applications

More Information
  • Received Date: September 05, 2022
  • Available Online: July 21, 2022
  • Published Date: May 04, 2023
  •   Objectives  Receiver autonomous integrity monitoring (RAIM) is the guarantee of highly reliable navigation and positioning for terminal users, and the development of low earth orbit (LEO) satellites brings new opportunities for integrity monitoring. However, there may be significant differences in terminal RAIM performance under different LEO constellation enhancements.
      Methods  We systematically evaluate the RAIM availability and fault detection effects of the BeiDou navigation satellite system (BDS) under LEO satellite augmentation based on three typical LEO constellations: High-inclination (80 satellites), mid-inclination (120 satellites) and mixed-inclination constellations (168 satellites).
      Results  The simulation results show that the RAIM availability effect under the high-inclination constellation enhancement is most effective in high-latitude regions, while in the mid- and low-latitude regions, the RAIM availability effect under the mid-inclination constellation enhancement is the best. After adding the high-inclination, mid-inclination, and mixed-inclination constellations, the global RAIM availability in the non-precision approach phase is improved by 30.5%, 29.0%, and 41.0% than that of the BDS, respectively.
      Conclusions  It can be seen that the hybrid constellation composed of different orbital inclinations can compensate for the defects in spatial coverage of the visible satellites, and its global RAIM availability enhancement effect is optimal, and the minimum pseudorange deviation detected by the enhanced RAIM is reduced by 33.3 m compared with the previous one.
  • [1]
    Yang Y X, Mao Y, Sun B J. Basic Performance and Future Developments of BeiDou Global Navigation Satellite System[J]. Satellite Navigation, 2020(1): 1.
    [2]
    陈金平. GPS完善性增强研究[D]. 郑州: 信息工程大学, 2001.

    Chen Jinping. Research of GPS Integrity Augmentation[D]. Zhengzhou: Information Engineering University, 2001.
    [3]
    战兴群, 苏先礼. GNSS完好性监测及辅助性能增强技术[M]. 北京: 科学出版社, 2016.

    Zhan Xingqun, Su Xianli. GNSS Integrity Monitoring and Assisted Performance Enhancement Technology[M]. Beijing: Science Press, 2016.
    [4]
    王尔申, 杨迪, 宏晨, 等. ARAIM技术研究进展[J]. 电信科学, 2019, 35(8): 128-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201908014.htm

    Wang Ershen, Yang Di, Hong Chen, et al. Research Progress of ARAIM Technology[J]. Telecommunications Science, 2019, 35(8): 128-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201908014.htm
    [5]
    Yang Y X, Xu J Y. GNSS Receiver Autonomous Integrity Monitoring (RAIM) Algorithm Based on Robust Estimation[J]. Geodesy and Geodynamics, 2016, 7(2): 117-123. doi: 10.1016/j.geog.2016.04.004
    [6]
    罗思龙. GNSS用户级完好性监测算法理论、性能评估及优化研究[D]. 西安: 长安大学, 2019.

    Luo Silong. Research on Theory, Performance Assessment and Optimization of GNSS User-Based Integrity Monitoring Algorithm[D]. Xi'an: Chang'an University, 2019.
    [7]
    周雁. 北斗三号全球导航卫星系统建成开通新闻发布会召开[EB/OL]. [2021-10-19]. http://www.beidou.gov.cn/yw/xwzx/202008/t20200803_20935.html.

    Zhou Yan. Press Conference for the Completion of BeiDou-3 Global Satellite Navigation System[EB/OL]. [2021-10-19]. http://www.beidou.gov.cn/yw/xwzx/202008/t20200803_20935.html.
    [8]
    GPS-Galileo Working Group C ARAIM Technical Subgroup Milestone 3 Report[EB/OL]. [2021-10-19]. https://www.gps.gov/policy/cooperation/europe/2016/working-group-c/ARAIM-milestone-3-report.pdf.
    [9]
    刘一, 谷守周, 边少锋, 等. 一种基于观测数据集密度中心的新型RAIM算法[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1900-1906. doi: 10.13203/j.whugis20210234

    Liu Yi, Gu Shouzhou, Bian Shaofeng, et al. A New RAIM Algorithm Based on the Density Center of Observed Dataset[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1900-1906. doi: 10.13203/j.whugis20210234
    [10]
    张亚彬, 王利, 范丽红, 等. ISC参数改正的RAIM故障检测和识别[J]. 测绘科学技术学报, 2018, 35(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201801011.htm

    Zhang Yabin, Wang Li, Fan Lihong, et al. Detection and Identification of RAIM Fault Based on Inter-Signal Correction Parameters[J]. Journal of Geomatics Science and Technology, 2018, 35(1): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201801011.htm
    [11]
    王煜东, 许承东, 郑学恩. 基于斜率加权的最小二乘RAIM算法研究[J]. 电光与控制, 2020, 27(3): 13-16. doi: 10.3969/j.issn.1671-637X.2020.03.003

    Wang Yudong, Xu Chengdong, Zheng Xue'en. An RAIM Algorithm Based on Slope-Weighted Least Square Method[J]. Electronics Optics & Control, 2020, 27(3): 13-16. doi: 10.3969/j.issn.1671-637X.2020.03.003
    [12]
    韩清清, 王利, 罗思龙, 等. 改进的Hatch滤波平滑算法及RAIM性能分析[J]. 测绘科学技术学报, 2019, 36(3): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201903006.htm

    Han Qingqing, Wang Li, Luo Silong, et al. An Improved Hatch Filtering Smoothing Algorithm and RAIM Performance Analysis[J]. Journal of Geomatics Science and Technology, 2019, 36(3): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201903006.htm
    [13]
    赵昂, 杨元喜, 许扬胤, 等. 一种使用抗差估计的保护水平重构方法[J]. 武汉大学学报(信息科学版), 2021, 46(1): 96-102. doi: 10.13203/j.whugis20190043

    Zhao Ang, Yang Yuanxi, Xu Yangyin, et al. A Method of Protection Level Reconstruction Based on Robust Estimation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 96-102. doi: 10.13203/j.whugis20190043
    [14]
    韩清清, 王利, 罗思龙, 等. ARAIM算法的风险概率优化分配[J]. 测绘学报, 2021, 50(12): 1751-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202112011.htm

    Han Qingqing, Wang Li, Luo Silong, et al. Optimal Allocation of Risk Probability Based on ARAIM Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1751-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202112011.htm
    [15]
    王文博, 张鹏飞, 徐承东, 等. 基于BDS/GPS的奇偶矢量RAIM算法研究[C]//第七届中国卫星导航年会, 中国, 长沙, 2016.

    Wang Wenbo, Zhang Pengfei, Xu Chendong, et al. The Research on Parity Vector RAIM Algorithm Based on BDS/GPS Multi-constellation[C]// The 7th China Satellite Navigation Conference, Changsha, China, 2016.
    [16]
    田云青, 王利, 舒宝, 等. 北斗系统ARAIM可用性评估[J]. 测绘学报, 2021, 50(7): 879-890. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202107004.htm

    Tian Yunqing, Wang Li, Shu Bao, et al. Evaluation of the Availability of BDS ARAIM[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 879-890. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202107004.htm
    [17]
    王磊, 陈锐志, 李德仁, 等. 珞珈一号低轨卫星导航增强系统信号质量评估[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2191-2196. doi: 10.13203/j.whugis20180413

    Wang Lei, Chen Ruizhi, Li Deren, et al. Quality Assessment of the LEO Navigation Augmentation Signals from Luojia-1A Satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191-2196. doi: 10.13203/j.whugis20180413
    [18]
    卢鋆, 张弓, 申建华, 等. 低轨增强星座对卫星导航系统能力提升分析[J]. 卫星应用, 2020(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYG202002015.htm

    Lu Yun, Zhang Gong, Shen Jianhua, et al. Analysis on the Improvement of Satellite Navigation System Capability by LEO Enhanced Constellation[J]. Satellite Application, 2020(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYG202002015.htm
    [19]
    张小红, 马福建. 低轨导航增强GNSS发展综述[J]. 测绘学报, 2019, 48(9): 1073-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201909002.htm

    Zhang Xiaohong, Ma Fujian. Review of the Development of LEO Navigation-Augmented GNSS[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1073-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201909002.htm
    [20]
    王文博, 徐颖. 基于低轨星座增强的北斗系统RAIM可用性分析[J]. 大地测量与地球动力学, 2020, 40(11): 1158-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202011011.htm

    Wang Wenbo, Xu Ying. Analysis of RAIM Availability Based on LEO-Augmented BDS[J]. Journal of Geodesy and Geodynamics, 2020, 40(11): 1158-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202011011.htm
    [21]
    卢广毅, 赵春梅, 邵银星. 基于RAIM算法的低轨增强GNSS定位故障检测[C]//第十一届中国卫星导航年会, 中国, 成都, 2020.

    Lu Guangyi, Zhao Chunmei, Shao Yinxing. Low-Track Enhanced GNSS Positioning Fault Detection Based on RAIM Algorithm[C] // The 11th China Satellite Navigation Conference, Chengdu, China, 2020.
    [22]
    SpaceX. To Build 4 000 Broadband Satellites in Seattle[EB/OL]. [2021-10-19]. https://spacenews.com/spacex-opening-seattle-plant-to-build-4000-broadband-satellites/.
    [23]
    蒙艳松, 边朗, 王瑛, 等. 基于"鸿雁"星座的全球导航增强系统[J]. 国际太空, 2018(10): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201810005.htm

    Meng Yansong, Bian Lang, Wang Ying, et al. Global Navigation Augmentation System Based on Hongyan Satellite Constellation[J]. Space International, 2018(10): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GJTK201810005.htm
    [24]
    马福建. 低轨星座增强GNSS精密定位关键技术研究[D]. 武汉: 武汉大学, 2018.

    Ma Fujian. Research on the Key Technologies for GNSS Precise Positioning Augmented with LEO Constellation[D]. Wuhan: Wuhan University, 2018.
    [25]
    陈雨, 赵灵峰, 刘会杰, 等. 低轨Walker星座构型演化及维持策略分析[J]. 宇航学报, 2019, 40(11): 1296-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201911006.htm

    Chen Yu, Zhao Lingfeng, Liu Huijie, et al. Analysis of Configuration and Maintenance Strategy of LEO Walker Constellation[J]. Journal of Astronautics, 2019, 40(11): 1296-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201911006.htm
    [26]
    关梅倩, 焦文海, 贾小林, 等. 基于导航增强的低轨卫星星座设计[C]// 第九届中国卫星导航年会, 中国, 哈尔滨, 2018.

    Guan Meiqian, Jiao Wenhai, Jia Xiaolin, et al. LEO Satellite Constellation Design Based on Navigation Augmentation[C] // The 9th China Satellite Navigation Conference, Harbin, China, 2018.
    [27]
    沈叶锋, 张一. 基于通导一体化的低轨卫星导航增强系统设计[C]. 第十一届中国卫星导航年会, 中国, 成都, 2020.

    Shen Yefeng, Zhang Yi. Design for LEO Satellite Navigation Augmentation System Based on Integrated Communication and Navigation[C]//The 11th China Satellite Navigation Conference, Chengdu, China, 2020.
    [28]
    Overland J E, Wang M Y. When will the Summer Arctic be Nearly Sea Ice Free?[J]. Geophysical Research Letters, 2013, 40(10): 2097-2101.
    [29]
    Li X X, Ma F J, Li X, et al. LEO Constellation-Augmented Multi-GNSS for Rapid PPP Convergence[J]. Journal of Geodesy, 2019, 93(5): 749-764.
    [30]
    Ma F J, Zhang X H, Li X X, et al. Hybrid Constellation Design Using a Genetic Algorithm for a LEO-Based Navigation Augmentation System[J]. GPS Solutions, 2020, 24(2): 62.
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views (932) PDF downloads (158) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return