HU Zhuoming, YUAN Haijun, HE Xiufeng, ZHANG Zhetao, WANG Jin. Influence of MGEX Differential Code Bias Products on BDS-3 Pseudorange Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 756-764. DOI: 10.13203/j.whugis20210454
Citation: HU Zhuoming, YUAN Haijun, HE Xiufeng, ZHANG Zhetao, WANG Jin. Influence of MGEX Differential Code Bias Products on BDS-3 Pseudorange Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 756-764. DOI: 10.13203/j.whugis20210454

Influence of MGEX Differential Code Bias Products on BDS-3 Pseudorange Single Point Positioning

More Information
  • Received Date: August 17, 2021
  • Available Online: October 17, 2022
  • Objectives 

    In order to study the influence of different differential code bias (DCB) products on BDS-3 pseudorange single point positioning, the BDS-3 single-frequency and dual-frequency ionospheric-free combined pseudorange single point positioning satellite-side DCB correction model was derived.

    Methods 

    Based on two DCB products of Chinese Academy of Sciences (CAS) and Deutsches Zentrum für Luftund Raumfahrt(DLR) released by the multi-global navigation satellite system(GNSS) experiment, combined with the BDS-3 measured data from the International GNSS Service stations evenly distributed in different latitudes around the world for 7 days of B1I, B1C and B2a single frequency and B1C/B2a, B1I/B3I two commonly used ionospheric-free combined pseudorange single point positioning accuracy for comparison and analysis.

    Results 

    Experimental results show that in the three frequencies of B1I, B1C, and B2a and the two combinations of B1C/B2a and B1I/B3I, the positioning accuracy of CAS products after correction is better than that of DLR products as a whole. Specifically, the average of positioning accuracy has increased 3 cm, 1 cm, and 6 cm in the directions of E, N, and U,respectively.

    Conclusions 

    It can be concluded that for BDS-3 pseudorange single point positioning, the positioning accuracy of CAS products after correction is generally better than that of DLR products.

  • [1]
    Dach R, Lutz S, Walser P, et al. Bernese GNSS Software Version 5.2[M]. Berne: Astronomical Institute of University of Berne, 2015.
    [2]
    Håkansson M,Jensen A B O,Horemuz M,et al. Review of Code and Phase Biases in Multi-GNSS Positioning[J]. GPS Solutions, 2017, 21(3) : 849-860.
    [3]
    Wilson B D , Yinger C H , Feess W A , et al. New and Improved: The Broadcast Interfrequency Biases[J]. GPS World, 1999, 10(9):56-66.
    [4]
    王宁波,袁运斌,张宝成, 等.GPS民用广播星历中ISC参数精度分析及其对导航定位的影响[J].测绘学报,2016,45(8):919-928.

    Wang Ningbo,Yuan Yunbin,Zhang Baocheng, et al.Accuracy Analysis of ISC Parameters in GPS Civil Broadcast Ephemeris and Its Influence on Navigation and Positioning[J].Acta Geodaetica et Cartographica Sinica,2016,45(8):919-928.
    [5]
    曾添,隋立芬,鲍亚东, 等.BDS卫星端差分码偏差对定位的影响及改正模型研究[J].大地测量与地球动力学,2017,37(1):53-57.

    Zeng Tian,Sui Lifen,Bao Yadong, et al.Study on the Influence of BDS Satellite Differential Code Deviation on Positioning and the Correction Model[J].Journal of Geodesy and Geodynamics,2017,37(1):53- 57.
    [6]
    张强,赵齐乐,章红平, 等.利用北斗观测实验网解算北斗卫星差分码偏差[J].武汉大学学报(信息科学版),2016,41(12):1649-1655.

    Zhang Qiang,Zhao Qile,Zhang Hongping, et al.Using BeiDou Observation and Experiment Network to Solve the Difference of BeiDou Satellite Differential Code Deviation[J]. Geomatics and Information Science of Wuhan University,2016,41(12):1649-1655.
    [7]
    Li X , Xie W , Huang J , et al. Estimation and Analysis of Differential Code Biases for BDS3/BDS2 Using iGMAS and MGEX Observations[J]. Journal of Geodesy, 2019, 93(3):419-435.
    [8]
    Montenbruck O , Hauschild A , Steigenberger P . Differential Code Bias Estimation Using Multi‐GNSS Observations and Global Ionosphere Maps[J]. Navigation, 2015, 61(3):191-201.
    [9]
    Wang N , Yuan Y , Li Z , et al. Determination of Differential Code Biases with Multi-GNSS Observations[J]. Journal of Geodesy, 2016, 90(3):209-228.
    [10]
    Li Z, Yuan Y, Hui L, et al. Two-step Method for the Determination of the Differential Code Biases of COMPASS Satellites[J]. Journal of Geodesy, 2012, 86(11):1059-1076.
    [11]
    Lou Y , Zheng F , Gu S , et al. Multi-GNSS Precise Point Positioning with Raw Single-Frequency and Dual-Frequency Measurement Models[J]. GPS Solutions, 2016, 20(4):849-862.
    [12]
    Guo F , Zhang X , Wang J . Timing Group Delay and Differential Code Bias Corrections for BeiDou Positioning[J]. Journal of Geodesy, 2015, 89(5):427-445.
    [13]
    舒宝,刘晖,张明, 等.北斗系统硬件延迟解算及精度分析[J].武汉大学学报(信息科学版),2016,41(2):279-284.

    Shu Bao,Liu Hui,Zhang Ming, et al.BeiDou System Hardware Delay Calculation and Accuracy Analysis[J]. Geomatics and Information Science of Wuhan University,2016,41(2):279-284.
    [14]
    张辉, 郝金明, 刘伟平, 等. 估计接收机差分码偏差的GPS/BDS非组合精密单点定位模型[J]. 武汉大学学报 ( 信息科学版), 2019, 44(4): 495-500, 592.

    Zhang Hui, Hao Jinming, Liu Weiping, et al. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592.
    [15]
    梅登奎,闻德保.MGEX北斗差分码偏差两种精确处理方法对比分析[J].空间科学学报,2019,39(5):662-669.

    Mei Dengkui,Wen Debao.Comparison Analysis of Two Accurate Processing Methods for MGEX BeiDou Differential Code Deviation[J].Journal of Space Science,2019,39(5):662-669.
    [16]
    谷世铭,党亚民,王虎, 等.北斗差分码偏差改正对单点定位的影响[J].测绘科学,2020,45(10):10-15.

    Gu Shiming,Dang Yamin,Wang Hu, et al.The Influence of BeiDou Differential Code Deviation Correction on Single Point Positioning[J].Science of Surveying and Mapping,2020,45(10):10-15.
    [17]
    王利军,焦文海,贾小林, 等.BDS-3精密单点定位性能比较分析[J].大地测量与地球动力学,2021,41(4):357-361.

    Wang Lijun,Jiao Wenhai,Jia Xiaolin, et al.Comparative Analysis of BDS-3 Precision Single Point Positioning Performance[J].Journal of Geodesy and Geodynamics,2021,41(4):357-361.
    [18]
    邓远帆,郭斐,张小红, 等.北斗三号卫星多频多通道差分码偏差估计与分析[J].测绘学报,2021,50(4):448-456.

    Deng Yuanfan,Guo Fei,Zhang Xiaohong, et al.BeiDou-3 Satellite Multi-frequency and Multi-channel Differential Code Bias Estimation and Analysis[J]. Acta Geodaetica et Cartographica Sinica,2021,50(4):448-456.
    [19]
    Zhang B C, Teunissen P J G, Yuan Y B,et al. A Modified Carrier-to-Code Leveling Method for Retrieving Ionospheric Observables and Detecting Short-Term Temporal Variability of Receiver Differential Code Biases[J]. Journal of Geodesy,2019,93(1):19-28.
    [20]
    Zhang B C, Teunissen P J G, Yuan Y B. On the Short-Term Temporal Variations of GNSS Receiver Differential Phase Biases[J]. Journal of Geodesy,2017,91(5):563-572.
    [21]
    袁海军,章浙涛,何秀凤,等.北斗三号卫星差分码偏差稳定性分析及其对单点定位的影响[J].武汉大学学报(信息科学版),2023, 48(3): 425-432.

    Yuan Haijun, Zhang Zhetao, He Xiufeng, et al. Stability Analysis of Differential Code Deviation of BeidDou-3 Satellite and Its Influence on Single Point Positioning [J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432.
    [22]
    徐磊,常国宾,高井祥,等.附加闭合差约束的BDS频间偏差估计模型[J].武汉大学学报(信息科学版),2021,46(4):520-529.

    Xu Lei, Chang Guobin, Gao Jingxiang, et al.BDS Inter-Frequency Deviation Estimation Model with Closure Constraint [J]. Geomatics and Information Science of Wuhan University, 2021,46 (4): 520-529.
    [23]
    林高宇,王磊,何飞扬,等.Swarm低轨卫星星座的GPS接收机差分码偏差估计[J/OL].武汉大学学报(信息科学版),2023, 48(1): 119-126.

    Lin Gaoyu, Wang Lei, He Feiyang,et al . Differential Code Deviation Estimation of GPS Receiver for Swarm LEO Satellite Constellation [J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 119-126.
    [24]
    付宁波,陈艳梅,黄霞飞.基于GPS跟踪站的精密单点定位精度分析[J].测绘地理信息,2015,40(4):29-31.

    Fu Ningbo, Chen Yanmei, Huang Xiafei. Precision Analysis of Precise Point Positioning Based on GPS Tracking Station[J]. Journal of Geomatics, 2015,40(4):29-31.
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views (778) PDF downloads (78) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return