Citation: | YAN Haowen, ZHANG Xingang, LU Xiaomin, LI Pengbo. Approach to Automating DP Algorithm:Taking River Simplification as a Example[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 264-270. DOI: 10.13203/j.whugis20210412 |
Curve simplification is of importance in automated map generalization; nevertheless, the Douglas-Peucker (DP) algorithm popularly used in map generalization is not automatic, because a key parameter called distance tolerance (
To solve the problem, this paper proposed a method to automatically calculate
The experiment results show that (1) The proposed DP algorithm can automatically simplify the rivers in a specific geographical area to get the results at different scales; and (2) the resulting river curves generated by the proposed DP algorithm have a high degree of similarity with the ones made by experienced cartographers. Their average similarity degree is 0.927.
The proposed DP algorithm can simplify curve features on maps automatically, and the results are highly intelligent and credible. Although only river data is tested in this paper, the principle of the proposed method can be extended to other linear features on maps. Our future work will be on improving the accuracy of the proposed DP algorithm using more river data so that the algorithm can be used in practical map generalization engineering.
[1] |
Weibel R. A Typology of Constraints to Line Simplification[C]//The 7th International Symposium on Spatial Data Handling, Delft, The Netherlands, 1996.
|
[2] |
Jenkins J, Fleenor A, Dietz F. Moving Beyond the Frame: Geovisualization of Landscape Change Along the Southwestern Edge of Yosemite National Park[J]. Journal of Geovisualization and Spatial Analysis, 2019, 3(2): 9.
|
[3] |
Li Z L, Gong X Y, Jun C, et al. Functional Requirements of Systems for Visualization of Sustainable Development Goal (SDG) Indicators[J]. Journal of Geovisualization and Spatial Analysis, 2020, 4(1): 5.
|
[4] |
Mao B, Li B. Graph-Based 3D Building Semantic Segmentation for Sustainability Analysis[J].Journal of Geovisualization and Spatial Analysis, 2019, 4(1): 4.
|
[5] |
Larkey L B, Markman A B. Processes of Similarity Judgment[J].Cognitive Science,2005,29(6):1061-1076.
|
[6] |
Visser H, Nijs T. The Map Comparison Kit[J]. Environmental Modelling & Software, 2006, 21(3): 346-358.
|
[7] |
Li B N,Fonseca F.TDD:A Comprehensive Model for Qualitative Spatial Similarity Assessment[J]. Spatial Cognition & Computation, 2006, 6(1): 31-62.
|
[8] |
Rodriguez M A, Egenhofer M J. Determining Semantic Similarity Among Entity Classes from Different Ontologies[J].IEEE Transactions on Knowledge and Data Engineering, 2003, 15(2): 442-456.
|
[9] |
刘鹏程, 肖天元, 肖佳, 等. 曲线多尺度表达的Head-Tail信息量分割法[J]. 测绘学报, 2020, 49(7): 921-933.
Liu Pengcheng, Xiao Tianyuan, Xiao Jia, et al. A Head-Tail Information Break Method Oriented to Multi-scale Representation of Polyline[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 921-933.
|
[10] |
杜佳威, 武芳, 李靖涵, 等. 一种河口湾海岸线渐进化简方法[J]. 测绘学报, 2018, 47(4): 547-556.
Du Jiawei, Wu Fang, Li Jinghan, et al. A Progressive Simplification Method for the Estuary Coastline[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 547-556.
|
[11] |
Ramer U. An Iterative Procedure for the Polygonal Approximation of Plane Curves[J]. Computer Graphics and Image Processing, 1972, 1(3): 244-256.
|
[12] |
Douglas D H, Peucker T K. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or Its Caricature[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112-122.
|
[13] |
Hershberger J,Snoeyink J.Speeding up the Douglas Peucker Line-Simplification Algorithm[C]// The 5th International Symposium on Data Handling, Charleston, USA, 1992.
|
[14] |
闫浩文, 王家耀. 基于Voronoi图的点群目标普适综合算法[J]. 中国图象图形学报, 2005, 10(5): 633-636.
Yan Haowen, Wang Jiayao. A Generic Algorithm for Point Cluster Generalization Based on Voronoi Diagrams[J]. Journal of Image and Graphics, 2005, 10(5): 633-636.
|
[15] |
李世宝, 陈通, 刘建航, 等. 基于交叉点的道路曲线化简算法研究[J]. 测绘工程, 2017, 26(7): 1-4.
Li Shibao, Chen Tong, Liu Jianhang, et al. A Road Curve Simplification Algorithm Based on Intersection Point[J]. Engineering of Surveying and Mapping, 2017, 26(7): 1-4.
|
[16] |
于靖, 陈刚, 张笑, 等. 面向自然岸线抽稀的改进道格拉斯—普克算法[J]. 测绘科学, 2015, 40(4): 23-27.
Yu Jing, Chen Gang, Zhang Xiao, et al. An Improved Douglas-Peucker Algorithm Oriented to Natural Shoreline Simplification[J]. Science of Surveying and Mapping, 2015, 40(4): 23-27.
|
[17] |
Yan H W. Quantitative Relations Between Spatial Similarity Degree and Map Scale Change of Individual Linear Objects in Multi-scale Map Spaces[J]. Geocarto International, 2015, 30(4): 472-482.
|
[18] |
Yan H, Shen Y, Li J. Approach to Calculating Spatial Similarity Degrees of the Same River Basin Networks on Multi-scale Maps[J]. Geocarto International, 2016, 31(7): 765-782.
|
[19] |
Chen Z L, Ye W. The Precise Representation Model of Topological Relations of Complex Planar Objects[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3): 18-30.
|
[20] |
Huang B H, Zhong W, Zhai R J, et al. Hierarchical Area Partitioning Method of Urban Road Networks Matching[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3): 55-67.
|
[21] |
Toussaint G. A Comparison of Rhythmic Dissimilarity Measures[J].Forma,2006,21(2):129-149.
|
[22] |
Rosso R, Bacchi B, La Barbera P. Fractal Relation of Mainstream Length to Catchment Area in River Networks[J]. Water Resources Research, 1991, 27(3): 381-387.
|
[23] |
Power C, Simms A, White R. Hierarchical Fuzzy Pattern Matching for the Regional Comparison of Land Use Maps[J].International Journal of Geographical Information Science,2001,15(1):77-100.
|
[24] |
陈青燕, 梁丹, 徐文兵, 等. 一种线目标豪斯多夫相似距离度量指标[J]. 测绘科学, 2016, 41(8): 14-18.
Chen Qingyan, Liang Dan, Xu Wenbing, et al. Study of the Linear Object Similarity Measure Based on Hausdorff Distance[J]. Science of Surveying and Mapping, 2016, 41(8): 14-18.
|
[25] |
邓敏, 钮沭联, 李志林. GIS空间目标的广义Hausdorff距离模型[J]. 武汉大学学报(信息科学版), 2007, 32(7): 641-645.
Deng Min, Niu Shulian, Li Zhilin. A Generalized Hausdorff Distance for Spatial Objects in GIS[J]. Geomatics and Information Science of Wuhan University, 2007, 32(7): 641-645.
|
[26] |
程绵绵, 孙群, 李少梅, 等. 多尺度点群广义Hausdorff距离及在相似性度量中的应用[J]. 武汉大学学报(信息科学版), 2019, 44(6): 885-891.
Cheng Mianmian, Sun Qun, Li Shaomei, et al. Generalized Hausdorff Distance of Multi-scale Point Group and Its Application in Similarity Measurement[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 885-891.
|
[27] |
Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing Images Using the Hausdorff Distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863.
|
[1] | MENG Yiyue, GUO Chi, LIU Jingnan. Deep Reinforcement Learning Visual Target Navigation Method Based on Attention Mechanism and Reward Shaping[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1100-1108. DOI: 10.13203/j.whugis20230193 |
[2] | GAO Kuiliang, LIU Bing, YU Xuchu, YU Anzhu, SUN Yifan. Automatic Network Structure Search Method for Hyperspectral Image Classification[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 225-235. DOI: 10.13203/j.whugis20210380 |
[3] | WANG Jie, LIU Jiahang, LING Xinpeng, DUAN Zexian. Deep Learning-Based Joint Local and Non-local InSAR Image Phase Filtering Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240052 |
[4] | GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292 |
[5] | LI Yansheng, ZHANG Yongjun. A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190. DOI: 10.13203/j.whugis20210652 |
[6] | JI Shunping, LUO Chong, LIU Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. DOI: 10.13203/j.whugis20200620 |
[7] | ZHANG Liqiang, LI Yang, HOU Zhengyang, LI Xingang, GENG Hao, WANG Yuebin, LI Jingwen, ZHU Panpan, MEI Jie, JIANG Yanxiao, LI Shuaipeng, XIN Qi, CUI Ying, LIU Suhong. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864. DOI: 10.13203/j.whugis20200650 |
[8] | JU Yuanzhen, XU Qiang, JIN Shichao, LI Weile, DONG Xiujun, GUO Qinghua. Automatic Object Detection of Loess Landslide Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. DOI: 10.13203/j.whugis20200132 |
[9] | PAN Yin, SHAO Zhenfeng, CHENG Tao, HE Wei. Analysis of Urban Waterlogging Influence Based on Deep Learning Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 132-138. DOI: 10.13203/j.whugis20170217 |
[10] | FAN Heng, XU Jun, DENG Yong, XIANG Jinhai. Behavior Recognition of Human Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 492-497. DOI: 10.13203/j.whugis20140110 |