ZHU Jie, ZHANG Hongjun, LIAO Xianglin, XU Youwei. A Method for Geographical Environment Spatiotemporal Topic Discovery of Multi‑dimensional Relationships[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 291-302. DOI: 10.13203/j.whugis20210326
Citation: ZHU Jie, ZHANG Hongjun, LIAO Xianglin, XU Youwei. A Method for Geographical Environment Spatiotemporal Topic Discovery of Multi‑dimensional Relationships[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 291-302. DOI: 10.13203/j.whugis20210326

A Method for Geographical Environment Spatiotemporal Topic Discovery of Multi‑dimensional Relationships

More Information
  • Received Date: June 20, 2021
  • Available Online: July 21, 2022
  • Objectives 

    Using battlefield text data for spatiotemporal topic analysis, we can obtain the spatial distribution pattern of geographical environment elements and their impact characteristics on battlefield activities from micro to macro and from scattered to gathering places, and mine the spatial distribution and development law of battlefield events, which further enriches the perception mode of battlefield environment and provides a new means of battlefield environment efficiency analysis. It is of great significance and value for in-depth understanding of battlefield environmental knowledge.

    Methods 

    The key technology to improve the quality of spatiotemporal topic discovery in geographical environment is to effectively construct entity composite relationship network and integrate multi-dimensional heterogeneous relationships for topic clustering. First, a spatiotemporal topic tensor model integrating multi-dimensional relationships is constructed, and the complete expression of topic relationship is given by using the Tucker decomposition of topic tensor model. Then, the feature vector space of multi-dimensional relational clustering is constructed as the objective function of topic classification, and the block value matrix decomposition technology is used for joint clustering calculation, and the core tensor matrix is used to solve the problem of data sparsity. Finally, the block value matrix obtained by multi-dimensional relational clustering is used to obtain the associ‍ation value between geographical environment elements and spatiotemporal topics.

    Results 

    The results show that: (1) The geographical environment entities and entity relationships are correctly clustered into spatiotemporal topic structure. The accuracy rates in the training set were 88.4% and 86.9% respectively, and in the test set were 87.3% and 85.8% respectively. (2) The number of entities and tags clustered under different subject structures decreases gently with the reduction of subject scale. The statistical results show that the most subject tags are maneuver, attack and interception, and the most location tags are highlands, roads and villages. (3) Compared with latent Dirichlet allocation (LDA) algorithm, the multi-dimensional relationship joint clustering method can be seen that the number of entities and labels mined by this algorithm is generally higher than LDA algorithm, so it can be seen that the accurate and clear space-time topic structure can be obtained after integrating multi-dimensional relationships. (4) The block value matrix obtained by multi-dimensional relationship clustering reflects the internal characteristic relationship of the spatiotemporal topic structure of the geographical environment, indicating that the spatial-temporal theme has strong cohesion.

    Conclusions 

    This method can effectively improve the quality and efficiency of spatiotemporal topic discovery, making the obtained topics better show the cohesive correlation between geographical environment elements, geographical location and event topics, providing a basis for clearly reflecting the evolution process of spatiotemporal topics, and supporting for mastering the development trend of events. Since this paper only takes the co-occurrence frequency of entity words as the weight value in the construction of relationship matrix, there is a certain deviation in data analysis. In the future, we will combine the attention mechanism to dig deep into multi-source text data, improve the efficiency and accuracy of data analysis, and establish the temporal and spatial correlation between different hot spots on the basis of effectively discovering cohesive hot spots, for inferring the event change process and providing an important reference val‍ue for the dynamic deduction of battlefield environment.

  • [1]
    Jo Y, Oh A H. Aspect and Sentiment Unification Model for Online Review Analysis[C]// ACM International Conference on Web Search and Data Mining,Hong Kong,China, 2011.
    [2]
    段炼, 呙维, 朱欣焰, 等. 基于时空主题模型的微博主题提取[J]. 武汉大学学报(信息科学版), 2014, 39(2): 210-213.

    Duan Lian,Guo Wei,Zhu Xinyan,et al.Constructing Spatio-Temporal Topic Model for Microblog Topic Retrieving[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 210-213.
    [3]
    李璐萍, 赵小兵. 基于文本聚类的主题发现方法研究综述[J]. 情报探索, 2020(11): 121-127.

    Li Luping, Zhao Xiaobing. Review on Topic Discovery Methods Based on Text Clustering[J]. Information Research, 2020(11): 121-127.
    [4]
    Saraçoğlu R, Tütüncü K, Allahverdi N. A Fuzzy Clustering Approach for Finding Similar Documents Using a Novel Similarity Measure[J]. Expert Systems with Applications, 2007, 33(3): 600-605.
    [5]
    张会兵, 钟昊, 胡晓丽. 基于主题分析的用户评论聚类方法[J]. 计算机科学, 2019, 46(8): 50-55.

    Zhang Huibing,Zhong Hao,Hu Xiaoli.User Reviews Clustering Method Based on Topic Analysis[J]. Computer Science, 2019, 46(8): 50-55.
    [6]
    陈友, 程学旗, 杨森. 面向网络论坛的高质量主题发现[J]. 软件学报, 2011, 22(8): 1785-1804.

    Chen You, Cheng Xueqi, Yang Sen. Finding High Quality Threads in Web Forums[J]. Journal of Software, 2011, 22(8): 1785-1804.
    [7]
    Resch B,Usländer F,Havas C.Combining Machine-Learning Topic Models and Spatiotemporal Analysis of Social Media Data for Disaster Footprint and Dam‍age Assessment[J].Cartography and Geographic Information Science,2018,45(4):362-376.
    [8]
    文聪聪, 彭玲, 杨丽娜, 等. 主题模型与SVM组合的小尺度街区用地分类方法[J]. 地球信息科学学报, 2018, 20(2): 167-175.

    Wen Congcong,Peng Ling,Yang Lina,et al.Top‍ic Model Combined with the SVM for Small Scale Land Use Classification[J]. Journal of Geo‐Information Science, 2018, 20(2): 167-175.
    [9]
    刘菁菁, 刘雨思, 伊迪升, 等. 北京市四环内街区尺度下的主题混合模式挖掘[J]. 地球信息科学学报, 2020, 22(6): 1370-1382.

    Liu Jingjing,Liu Yusi,Yi Disheng,et al.Extract‍ing Mixed Topic Patterns Within Downtown Beijing at the Block Level[J].Journal of Geo‐Information Science, 2020, 22(6): 1370-1382.
    [10]
    Han J W,Kamber M.Data Mining:Concepts and Techniques[M].SanFrancisco,USA:Elsevier, 2006.
    [11]
    李海林, 邬先利. 基于时间序列聚类的主题发现与演化分析研究[J]. 情报学报, 2019, 38(10): 1041-1050.

    Li Hailin, Wu Xianli. Research on Topic Discovery and Evolution Based on Time Series Clustering[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(10): 1041-1050.
    [12]
    王艳东, 李萌萌, 付小康, 等. 基于社交媒体共词网络的灾情发展态势探测方法[J]. 武汉大学学报(信息科学版), 2020, 45(5): 691-698.

    Wang Yandong,Li Mengmeng,Fu Xiaokang,et al. A New Method to Detect the Development Situation of Disasters Based on Social Media Co-Word Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 691-698.
    [13]
    王艳东, 付小康, 李萌萌. 一种基于共词网络的社交媒体数据主题挖掘方法[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2287-2294.

    Wang Yandong, Fu Xiaokang, Li Mengmeng. A New Social Media Topic Mining Method Based on Co-Word Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2287-2294.
    [14]
    邵琦, 牟冬梅, 王萍, 等. 基于语义的突发公共卫生事件网络舆情主题发现研究[J]. 数据分析与知识发现, 2020, 4(9): 68-80.

    Shao Qi, Mu Dongmei, Wang Ping, et al. Identifying Subjects of Online Opinion from Public Health Emergencies[J]. Data Analysis and Knowledge Discovery, 2020, 4(9): 68-80.
    [15]
    周小平, 梁循, 张海燕. 基于R-C模型的微博用户社区发现[J]. 软件学报, 2014, 25(12): 2808-2823.

    Zhou Xiaoping, Liang Xun, Zhang Haiyan. User Community Detection on Micro-blog Using R-C Model[J]. Journal of Software, 2014, 25(12): 2808-2823.
    [16]
    龚卫华, 陈彦强, 裴小兵, 等. LBSN中融合多维关系的社区发现方法[J]. 软件学报, 2018, 29(4): 1163-1176.

    Gong Weihua, Chen Yanqiang, Pei Xiaobing, et al. Community Detection of Multi-dimensional Relationships in Location-Based Social Networks[J]. Journal of Software, 2018, 29(4): 1163-1176.
    [17]
    Yang L,Cao X,Jin D,et al.A Unified Semi-supervised Community Detection Framework Using Latent Space Graph Regularization[J].IEEE Transactions on Cybernetics, 2015, 45(11): 2585-2598.
    [18]
    Long B, Zhang Z M, Yu P S. Co-Clustering by Block Value Decomposition[C]// ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, USA, 2005.
    [19]
    高俊,万刚.战场环境工程理论和技术[M].北京:解放军出版社,2016.

    Gao Jun, Wan Gang. Theory and Technology of Battlefield Environment Engineering[M].Beijing: Liberation Army Press,2016.
    [20]
    周成虎. 全空间地理信息系统展望[J].地理科学进展, 2015, 34(2): 129-131.

    Zhou Chenghu. Prospects on Pan-Spatial Information System[J].Progress in Geography, 2015, 34(2): 129-131.
    [21]
    华一新. 全空间信息系统的核心问题和关键技术[J]. 测绘科学技术学报, 2016, 33(4): 331-335.

    Hua Yixin. The Core Problems and Key Technologies of Pan-Spatial Information System[J]. Journal of Geomatics Science and Technology, 2016, 33(4): 331-335.
    [22]
    王健健, 王艳楠, 周良辰, 等. 多粒度时空对象关联关系的分类体系与表达模型[J]. 地球信息科学学报, 2017, 19(9): 1164-1170.

    Wang Jianjian,Wang Yannan,Zhou Liangchen,‍al et.The Classification System and Expression Mod‍el of the Relationship of Spatio-Temporal Object of Multi-granularity[J]. Journal of Geo‐Information Science, 2017, 19(9): 1164-1170.
    [23]
    张政, 华一新, 张晓楠, 等. 多粒度时空对象关联关系基本问题初探[J]. 地球信息科学学报, 2017, 19(9): 1158-1163.

    Zhang Zheng, Hua Yixin, Zhang Xiaonan, et al. The Basic Issues of Associative Relationship of Spatial-Temporal Objects of Multi-granularity[J]. Journal of Geo‐Information Science, 2017, 19(9): 1158-1163.
    [24]
    李锐, 石佳豪, 董广胜, 等. 多粒度时空对象组成结构表达研究[J]. 地球信息科学学报, 2021, 23(1): 113-123.

    Li Rui, Shi Jiahao, Dong Guangsheng, et al. Research on Expression of Multi-granularity Spatio-Temporal Object Composition Structure[J]. Journal of Geo‐Information Science, 2021, 23(1): 113-123.
    [25]
    张雪英, 张春菊, 杜超利. 空间关系词汇与地理实体要素类型的语义约束关系构建方法[J]. 武汉大学学报(信息科学版), 2012, 37(11): 1266-1270.

    Zhang Xueying, Zhang Chunju, Du Chaoli. Semantic Relation Between Spatial Relation Terms and Feature Types of Geographical Entities[J]. Geomat‍ics and Information Science of Wuhan University, 2012, 37(11): 1266-1270.
    [26]
    Kolda T G, Bader B W. Tensor Decompositions and Applications[J]. SIAM Review, 2009, 51(3): 455-500.
    [27]
    Balazevic I, Allen C, Hospedales T. TuckER: Tensor Factorization for Knowledge Graph Completion[C]//Conference on Empirical Methods in Natural Language Processing and International Joint Conference on Natural Language Processing, Hong Kong, China, 2019.
    [28]
    邢汉发, 孟媛, 侯东阳, 等. 一种应用兴趣点数据进行地表覆盖分类的方法[J]. 武汉大学学报(信息科学版), 2019, 44(5): 758-764.

    Xing Hanfa, Meng Yuan, Hou Dongyang, et al. A Land-Cover Classification Method Using Point of Interest[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 758-764.
  • Related Articles

    [1]MENG Yiyue, GUO Chi, LIU Jingnan. Deep Reinforcement Learning Visual Target Navigation Method Based on Attention Mechanism and Reward Shaping[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1100-1108. DOI: 10.13203/j.whugis20230193
    [2]GAO Kuiliang, LIU Bing, YU Xuchu, YU Anzhu, SUN Yifan. Automatic Network Structure Search Method for Hyperspectral Image Classification[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 225-235. DOI: 10.13203/j.whugis20210380
    [3]WANG Jie, LIU Jiahang, LING Xinpeng, DUAN Zexian. Deep Learning-Based Joint Local and Non-local InSAR Image Phase Filtering Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240052
    [4]GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292
    [5]LI Yansheng, ZHANG Yongjun. A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190. DOI: 10.13203/j.whugis20210652
    [6]JI Shunping, LUO Chong, LIU Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. DOI: 10.13203/j.whugis20200620
    [7]ZHANG Liqiang, LI Yang, HOU Zhengyang, LI Xingang, GENG Hao, WANG Yuebin, LI Jingwen, ZHU Panpan, MEI Jie, JIANG Yanxiao, LI Shuaipeng, XIN Qi, CUI Ying, LIU Suhong. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864. DOI: 10.13203/j.whugis20200650
    [8]JU Yuanzhen, XU Qiang, JIN Shichao, LI Weile, DONG Xiujun, GUO Qinghua. Automatic Object Detection of Loess Landslide Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. DOI: 10.13203/j.whugis20200132
    [9]PAN Yin, SHAO Zhenfeng, CHENG Tao, HE Wei. Analysis of Urban Waterlogging Influence Based on Deep Learning Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 132-138. DOI: 10.13203/j.whugis20170217
    [10]FAN Heng, XU Jun, DENG Yong, XIANG Jinhai. Behavior Recognition of Human Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 492-497. DOI: 10.13203/j.whugis20140110
  • Cited by

    Periodical cited type(5)

    1. 张爱竹,李忍忍,梁树能,孙根云,付航. 联合样本扩充和谱空迭代的高光谱影像分类. 武汉大学学报(信息科学版). 2025(01): 97-109 .
    2. 杜培军,张伟,张鹏,林聪,郭山川,胡泽周. 一种联合空谱特征的高光谱影像分类胶囊网络. 测绘学报. 2023(07): 1090-1104 .
    3. 高奎亮,刘冰,余岸竹,徐佰祺,胡伟,胡家玮. 高光谱影像少样例分类的无监督元学习方法. 测绘学报. 2023(11): 1941-1952 .
    4. 张彬,刘亮,李晓杰,周伟. 基于深度学习的高光谱影像分类方法研究. 红外与毫米波学报. 2023(06): 825-833 .
    5. 孙一帆,余旭初,谭熊,刘冰,高奎亮. 面向小样本高光谱影像分类的轻量化关系网络. 武汉大学学报(信息科学版). 2022(08): 1336-1348 .

    Other cited types(1)

Catalog

    Article views (845) PDF downloads (65) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return