CHEN Jingyuan, ZHU Wu, ZHANG Qin, LI Zhenhong. Estimation of Three-Dimensional Electron Density Distribution Using Polarimetric SAR and IRI Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1677-1685. DOI: 10.13203/j.whugis20210061
Citation: CHEN Jingyuan, ZHU Wu, ZHANG Qin, LI Zhenhong. Estimation of Three-Dimensional Electron Density Distribution Using Polarimetric SAR and IRI Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1677-1685. DOI: 10.13203/j.whugis20210061

Estimation of Three-Dimensional Electron Density Distribution Using Polarimetric SAR and IRI Observations

Funds: 

The National Natural Science Foundation of China 42074040

The National Natural Science Foundation of China 41941019

the National Key Research and Development Program of China 2019YFC1509802

More Information
  • Author Bio:

    CHEN Jingyuan, master, majors in modeling of three-dimensional electron density with SAR/InSAR. E-mail: 2018126022@chd.edu.cn

  • Corresponding author:

    ZHU Wu, PhD, professor. E-mail: zhuwu@chd.edu.cn

  • Received Date: May 28, 2021
  • Published Date: November 04, 2021
  •   Objectives  The ionosphere, extending from about 60 km to 1000 km above the earth's surface, is an important part of the solar-terrestrial space environment. To better understand and characterize the ionosphere, it is necessary to observe the ionospheric parameters such as total electron content (TEC) and three-dimensional (3D) electron density. However, the three-dimensional electron density derived by the current methods is limited due to the low-spatial resolution. A new method combining of full-polarimetric synthetic aperture radar (SAR) and the international reference ionosphere (IRI) model is proposed to estimate high-spatial 3D electron density distribution.
      Methods  Firstly, we calculate Faraday rotation (FR) angles from full polarimetric SAR data.Then, we estimate vertical total electron content (VTEC) using FR angles and geomagnetic field information, and reconstruct 3D electron density distribution by combining IRI electron density profile with SAR-derived VTEC.
      Results  Application of the proposed method to ALOS-1 full-polarization SAR images with descending and ascending orbits over the region of Alaska shows that, for Experiment 1 with ascending orbit, SAR-derived VTEC is consistent with GPS-derived VTEC and the difference between them is about 3.1 TECU (total electron content unit). For Experiment 2 with descending orbit, the difference between SAR-derived VTEC and incoherent scattering radar (ISR) VTEC is only 0.2 TECU.When comparing with the electron density derived from ISR, the standard deviations has decreased by 33.57% for the proposed method, and the standard deviations has decreased by 47.98% at the attitude over 133 km.
      Conclusions  It can be concluded that it is capable to estimate high-spatial-resolution VTEC and 3D electron density from full-polarization SAR images. These products can help us better understand the characteristics of ionospheric variation in space.
  • [1]
    Chen J Y, Zebker H A. Ionospheric Artifacts in Simultaneous L-Band InSAR and GPS Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1 227-1 239 doi: 10.1109/TGRS.2011.2164805
    [2]
    Zhu W, Ding X L, Jung H S, et al. Mitigation of Ionospheric Phase Delay Error for SAR Interferometry: An Application of FR-Based and Azimuth Offset Methods[J]. Remote Sensing Letters, 2017, 8 (1): 58-67 doi: 10.1080/2150704X.2016.1235808
    [3]
    Calais E, Minster J B. GPS Detection of Ionospheric Perturbations Following the January 17, 1994, Northridge Earthquake[J]. Geophysical Research Letters, 1995, 22(9): 1 045-1 048 doi: 10.1029/95GL00168
    [4]
    马一方, 姜卫平, 席瑞杰. 利用全球电离层地图分析芦山地震电离层异常变化[J]. 武汉大学学报·信息科学版, 2015, 40(9): 1 274-1 278 doi: 10.13203/j%20.whu%20g%20is20130683

    Ma Yifang, Jiang Weiping, Xi Ruijie. Analysis of Seismo-Ionospheric Anomalies in Vertical Total Electron Content of GIM for Lushan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1 274-1 278 doi: 10.13203/j%20.whu%20g%20is20130683
    [5]
    Jakowski N, Heise S, Wehrenpfennig A, et al. GPS/GLONASS-Based TEC Measurements as a Contributor for Space Weather Forecast[J]. Journal of Atmospheric and Solar - Terrestrial Physics, 2002, 64(6): 729-735 http://www.cosmic.ucar.edu/related_papers/2002_jakowski_tec.pdf
    [6]
    许超钤, 姚宜斌, 张豹, 等. 2010- 08-01太阳风暴对电离层及GPS测量的影响分析[J]. 武汉大学学报·信息科学版, 2013, 38(6): 689-693 http://ch.whu.edu.cn/article/id/2672

    Xu Chaoqian, Yao Yibin, Zhang Bao, et al. Impact of the Ionosphere and GPS Surveying Caused by Solar Storms on August 1, 2010[J]. Geomatics and Information Science of Wuhan University, 2013, 38 (6): 689-693 http://ch.whu.edu.cn/article/id/2672
    [7]
    Wu M J, Guo P, Fu N F, et al. Topside Correction of IRI by Global Modeling of Ionospheric Scale Height Using COSMIC Radio Occultation Data[J]. Journal of Geophysical Research: Space Physics, 2016, 121(6): 5 675-5 692 doi: 10.1002/2016JA022785
    [8]
    Liu L B, Le H J, Chen Y D, et al. New Aspects of the Ionospheric Behavior over Millstone Hill During the 30-Day Incoherent Scatter Radar Experiment in October 2002[J]. Journal of Geophysical Research: Space Physics, 2019, 124(7): 6 288-6 295 doi: 10.1029/2019JA026806
    [9]
    Xu F L, Li Z S, Zhang K F, et al. An Investigation of Optimal Machine Learning Methods for the Prediction of ROTI[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 1-15 http://www.cnki.com.cn/Article/CJFDTotal-CHBX202002001.htm
    [10]
    Bilitza D. International Reference Ionosphere 2000 [J]. Radio Science, 2001, 36(2): 261-275 doi: 10.1029/2000RS002432
    [11]
    马朝忠, 朱建青, 韩松辉. 基于ARIMA模型的卫星钟差异常值探测的模型选择方法[J]. 武汉大学学报·信息科学版, 2020, 45(2): 167-172 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202002002.htm

    Ma Chaozhong, Zhu Jianqing, Han Songhui. Model Selection Method Based on ARIMA Model in Outliers Detection of Satellite Clock Offset[J]. Geomatics and Information Science of Wuhan University, 2020, 45 (2): 167-172 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202002002.htm
    [12]
    Meyer F, Nicoll J. Mapping Ionospheric TEC Using Faraday Rotation in Full- Polarimetric L-Band SAR Data[C]//The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008
    [13]
    Rosen P A, Hensley S, Chen C. Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data[C]// IEEE Radar Conference, Arlington, Texas, USA, 2010
    [14]
    Jehle M, Frey O, Small D, et al. Measurement of Ionospheric TEC in Spaceborne SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2 460-2 468 doi: 10.1109/TGRS.2010.2040621
    [15]
    Pi X Q, Freeman A, Chapman B, et al. Imaging Ionospheric Inhomogeneities Using Spaceborne Synthetic Aperture Radar[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A4): A04303
    [16]
    Wang C, Zhang M, Xu Z W, et al. TEC Retrieval from Spaceborne SAR Data and Its Applications[J]. Journal of Geophysical Research: Space Physics, 2014, 119(10): 8 648-8 659 doi: 10.1002/2014JA020078
    [17]
    Kim J S, Papathanassiou K. SAR Observation of Ionosphere Using Range/Azimuth Sub-Bands[C]// The 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014
    [18]
    Wang C, Guo W L, Zhao H S, et al. Improving the Topside Profile of Ionosonde with TEC Retrieved from Spaceborne Polarimetric SAR[J]. Sensors, 2019, 19(3): 516-526 doi: 10.3390/s19030516
    [19]
    Freeman A. Calibration of Linearly Polarized Polarimetric SAR Data Subject to Faraday Rotation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1 617-1 624 doi: 10.1109/TGRS.2004.830161
    [20]
    Quegan S. A Unified Algorithm for Phase and CrossTalk Calibration of Polarimetric Data-Theory and Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1): 89-99 doi: 10.1109/36.285192
    [21]
    Bickel S H, Bates R H T. Effects of Magneto-Ionic Propagation on the Polarization Scattering Matrix[J]. Proceedings of the IEEE, 1965, 53(8): 1 089- 1 091 doi: 10.1109/PROC.1965.4097
    [22]
    Chen J, Quegan S. Improved Estimators of Faraday Rotation in Spaceborne Polarimetric SAR Data[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 846-850 doi: 10.1109/LGRS.2010.2047002
    [23]
    Li L, Zhang Y S, Dong Z, et al. New Faraday Rotation Estimators Based on Polarimetric Covariance Matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 133-137 doi: 10.1109/LGRS.2013.2250478
    [24]
    Kim J S, Papathanassiou K. Correction of Ionospheric Effects on SAR Interferometry Using a Com bined TEC Estimator[J]. Acta Cybernetica, 2013, 20(1): 127-146 http://elib.dlr.de/87072
    [25]
    张静, 刘经南, 李丛. 国际参考电离层模型的研究与探讨[J]. 桂林理工大学学报, 2017, 37(1): 114-119 https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201701016.htm

    Zhang Jing, Liu Jingnan, Li Cong. Research and Discussion on the International Reference Ionosphere Model[J]. Journal of Guilin University of Technology, 2017, 37(1): 114-119 https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201701016.htm
  • Related Articles

    [1]XU Zongqiu, ZHANG Hongyang, XU Yantian, LI Jun, YANG Nannan, SHI Shuai. A Method for Estimating Ionospheric Power Spectral Density in BDS Undifferenced and Uncombined PPP[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220752
    [2]LI Yongtao, LI Jianwen, WEI Rongrong, SHI Yishuai, ZHANG Shuo, CHE Tongyu. Analysis of Temporal and Spatial Variation Characteristics of Global Ionospheric TEC Grid[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 776-783. DOI: 10.13203/j.whugis20180431
    [3]Wang Cheng, Wang Jiexian, Duan Bingbing. Global Ionospheric Model with International Reference Ionosphere Constraint[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1340-1346.
    [4]YAO Yibin, CHEN Jiajun, CHEN Peng, KONG Jian. Analysis of Europe Ionospheric Responses During Magnetic Storms in2003-2006Using Ionospheric Tomographic Technology[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 132-136. DOI: 10.13203/j.whugis20120630
    [5]JIANG Nan, CAO Yani, ZHAO Junxi, AN Min. Foundation and Application of Electronic Map Multi-scale Display Models of Different Density Areas[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 465-469.
    [6]CHEN Biyan, DAI Wujiao, CAI Changsheng, XIA Pengfei. Ionospheric Modeling and Forecasting Based on Tomographic and Neural Network Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 972-975.
    [7]WANG Zemin, AN Jiachun, SUN Wei, ZHAO Ying. Analysis of Ionospheric Effect During a Solar Eclipse Using GPS Observation of Occultation and Ground Stations[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 1-5.
    [8]ZHAO Ying, ZHANG Xiaohong. Inversion of Ionospheric Electron Density Profiles with COSMIC Occultation Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 644-648.
    [9]CHENG Pengfei, LI Xiyin, MA Jianping. Investigations on Two Models for the Determination of Ionospheric Electron Content[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 524-528.
    [10]Qiu Weining, Chen Yongqi. The Variant Reguarity of Ionospheric Vertical Total Electron Content in Hong Kong Area[J]. Geomatics and Information Science of Wuhan University, 1998, 23(2): 115-117.
  • Cited by

    Periodical cited type(1)

    1. 雷洋,朱武,孙全,杨文敬,张金敏. 顾及方位向偏移的光谱分频法InSAR电离层改正. 测绘科学. 2023(01): 81-90 .

    Other cited types(3)

Catalog

    Article views (1183) PDF downloads (65) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return