CHEN Jingyuan, ZHU Wu, ZHANG Qin, LI Zhenhong. Estimation of Three-Dimensional Electron Density Distribution Using Polarimetric SAR and IRI Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1677-1685. DOI: 10.13203/j.whugis20210061
Citation: CHEN Jingyuan, ZHU Wu, ZHANG Qin, LI Zhenhong. Estimation of Three-Dimensional Electron Density Distribution Using Polarimetric SAR and IRI Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1677-1685. DOI: 10.13203/j.whugis20210061

Estimation of Three-Dimensional Electron Density Distribution Using Polarimetric SAR and IRI Observations

Funds: 

The National Natural Science Foundation of China 42074040

The National Natural Science Foundation of China 41941019

the National Key Research and Development Program of China 2019YFC1509802

More Information
  • Author Bio:

    CHEN Jingyuan, master, majors in modeling of three-dimensional electron density with SAR/InSAR. E-mail: 2018126022@chd.edu.cn

  • Corresponding author:

    ZHU Wu, PhD, professor. E-mail: zhuwu@chd.edu.cn

  • Received Date: May 28, 2021
  • Published Date: November 04, 2021
  •   Objectives  The ionosphere, extending from about 60 km to 1000 km above the earth's surface, is an important part of the solar-terrestrial space environment. To better understand and characterize the ionosphere, it is necessary to observe the ionospheric parameters such as total electron content (TEC) and three-dimensional (3D) electron density. However, the three-dimensional electron density derived by the current methods is limited due to the low-spatial resolution. A new method combining of full-polarimetric synthetic aperture radar (SAR) and the international reference ionosphere (IRI) model is proposed to estimate high-spatial 3D electron density distribution.
      Methods  Firstly, we calculate Faraday rotation (FR) angles from full polarimetric SAR data.Then, we estimate vertical total electron content (VTEC) using FR angles and geomagnetic field information, and reconstruct 3D electron density distribution by combining IRI electron density profile with SAR-derived VTEC.
      Results  Application of the proposed method to ALOS-1 full-polarization SAR images with descending and ascending orbits over the region of Alaska shows that, for Experiment 1 with ascending orbit, SAR-derived VTEC is consistent with GPS-derived VTEC and the difference between them is about 3.1 TECU (total electron content unit). For Experiment 2 with descending orbit, the difference between SAR-derived VTEC and incoherent scattering radar (ISR) VTEC is only 0.2 TECU.When comparing with the electron density derived from ISR, the standard deviations has decreased by 33.57% for the proposed method, and the standard deviations has decreased by 47.98% at the attitude over 133 km.
      Conclusions  It can be concluded that it is capable to estimate high-spatial-resolution VTEC and 3D electron density from full-polarization SAR images. These products can help us better understand the characteristics of ionospheric variation in space.
  • [1]
    Chen J Y, Zebker H A. Ionospheric Artifacts in Simultaneous L-Band InSAR and GPS Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1 227-1 239 doi: 10.1109/TGRS.2011.2164805
    [2]
    Zhu W, Ding X L, Jung H S, et al. Mitigation of Ionospheric Phase Delay Error for SAR Interferometry: An Application of FR-Based and Azimuth Offset Methods[J]. Remote Sensing Letters, 2017, 8 (1): 58-67 doi: 10.1080/2150704X.2016.1235808
    [3]
    Calais E, Minster J B. GPS Detection of Ionospheric Perturbations Following the January 17, 1994, Northridge Earthquake[J]. Geophysical Research Letters, 1995, 22(9): 1 045-1 048 doi: 10.1029/95GL00168
    [4]
    马一方, 姜卫平, 席瑞杰. 利用全球电离层地图分析芦山地震电离层异常变化[J]. 武汉大学学报·信息科学版, 2015, 40(9): 1 274-1 278 doi: 10.13203/j%20.whu%20g%20is20130683

    Ma Yifang, Jiang Weiping, Xi Ruijie. Analysis of Seismo-Ionospheric Anomalies in Vertical Total Electron Content of GIM for Lushan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1 274-1 278 doi: 10.13203/j%20.whu%20g%20is20130683
    [5]
    Jakowski N, Heise S, Wehrenpfennig A, et al. GPS/GLONASS-Based TEC Measurements as a Contributor for Space Weather Forecast[J]. Journal of Atmospheric and Solar - Terrestrial Physics, 2002, 64(6): 729-735 http://www.cosmic.ucar.edu/related_papers/2002_jakowski_tec.pdf
    [6]
    许超钤, 姚宜斌, 张豹, 等. 2010- 08-01太阳风暴对电离层及GPS测量的影响分析[J]. 武汉大学学报·信息科学版, 2013, 38(6): 689-693 http://ch.whu.edu.cn/article/id/2672

    Xu Chaoqian, Yao Yibin, Zhang Bao, et al. Impact of the Ionosphere and GPS Surveying Caused by Solar Storms on August 1, 2010[J]. Geomatics and Information Science of Wuhan University, 2013, 38 (6): 689-693 http://ch.whu.edu.cn/article/id/2672
    [7]
    Wu M J, Guo P, Fu N F, et al. Topside Correction of IRI by Global Modeling of Ionospheric Scale Height Using COSMIC Radio Occultation Data[J]. Journal of Geophysical Research: Space Physics, 2016, 121(6): 5 675-5 692 doi: 10.1002/2016JA022785
    [8]
    Liu L B, Le H J, Chen Y D, et al. New Aspects of the Ionospheric Behavior over Millstone Hill During the 30-Day Incoherent Scatter Radar Experiment in October 2002[J]. Journal of Geophysical Research: Space Physics, 2019, 124(7): 6 288-6 295 doi: 10.1029/2019JA026806
    [9]
    Xu F L, Li Z S, Zhang K F, et al. An Investigation of Optimal Machine Learning Methods for the Prediction of ROTI[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 1-15 http://www.cnki.com.cn/Article/CJFDTotal-CHBX202002001.htm
    [10]
    Bilitza D. International Reference Ionosphere 2000 [J]. Radio Science, 2001, 36(2): 261-275 doi: 10.1029/2000RS002432
    [11]
    马朝忠, 朱建青, 韩松辉. 基于ARIMA模型的卫星钟差异常值探测的模型选择方法[J]. 武汉大学学报·信息科学版, 2020, 45(2): 167-172 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202002002.htm

    Ma Chaozhong, Zhu Jianqing, Han Songhui. Model Selection Method Based on ARIMA Model in Outliers Detection of Satellite Clock Offset[J]. Geomatics and Information Science of Wuhan University, 2020, 45 (2): 167-172 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202002002.htm
    [12]
    Meyer F, Nicoll J. Mapping Ionospheric TEC Using Faraday Rotation in Full- Polarimetric L-Band SAR Data[C]//The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008
    [13]
    Rosen P A, Hensley S, Chen C. Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data[C]// IEEE Radar Conference, Arlington, Texas, USA, 2010
    [14]
    Jehle M, Frey O, Small D, et al. Measurement of Ionospheric TEC in Spaceborne SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2 460-2 468 doi: 10.1109/TGRS.2010.2040621
    [15]
    Pi X Q, Freeman A, Chapman B, et al. Imaging Ionospheric Inhomogeneities Using Spaceborne Synthetic Aperture Radar[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A4): A04303
    [16]
    Wang C, Zhang M, Xu Z W, et al. TEC Retrieval from Spaceborne SAR Data and Its Applications[J]. Journal of Geophysical Research: Space Physics, 2014, 119(10): 8 648-8 659 doi: 10.1002/2014JA020078
    [17]
    Kim J S, Papathanassiou K. SAR Observation of Ionosphere Using Range/Azimuth Sub-Bands[C]// The 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014
    [18]
    Wang C, Guo W L, Zhao H S, et al. Improving the Topside Profile of Ionosonde with TEC Retrieved from Spaceborne Polarimetric SAR[J]. Sensors, 2019, 19(3): 516-526 doi: 10.3390/s19030516
    [19]
    Freeman A. Calibration of Linearly Polarized Polarimetric SAR Data Subject to Faraday Rotation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1 617-1 624 doi: 10.1109/TGRS.2004.830161
    [20]
    Quegan S. A Unified Algorithm for Phase and CrossTalk Calibration of Polarimetric Data-Theory and Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1): 89-99 doi: 10.1109/36.285192
    [21]
    Bickel S H, Bates R H T. Effects of Magneto-Ionic Propagation on the Polarization Scattering Matrix[J]. Proceedings of the IEEE, 1965, 53(8): 1 089- 1 091 doi: 10.1109/PROC.1965.4097
    [22]
    Chen J, Quegan S. Improved Estimators of Faraday Rotation in Spaceborne Polarimetric SAR Data[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 846-850 doi: 10.1109/LGRS.2010.2047002
    [23]
    Li L, Zhang Y S, Dong Z, et al. New Faraday Rotation Estimators Based on Polarimetric Covariance Matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 133-137 doi: 10.1109/LGRS.2013.2250478
    [24]
    Kim J S, Papathanassiou K. Correction of Ionospheric Effects on SAR Interferometry Using a Com bined TEC Estimator[J]. Acta Cybernetica, 2013, 20(1): 127-146 http://elib.dlr.de/87072
    [25]
    张静, 刘经南, 李丛. 国际参考电离层模型的研究与探讨[J]. 桂林理工大学学报, 2017, 37(1): 114-119 https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201701016.htm

    Zhang Jing, Liu Jingnan, Li Cong. Research and Discussion on the International Reference Ionosphere Model[J]. Journal of Guilin University of Technology, 2017, 37(1): 114-119 https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201701016.htm
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return