Citation: | CHEN Jingyuan, ZHU Wu, ZHANG Qin, LI Zhenhong. Estimation of Three-Dimensional Electron Density Distribution Using Polarimetric SAR and IRI Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1677-1685. DOI: 10.13203/j.whugis20210061 |
[1] |
Chen J Y, Zebker H A. Ionospheric Artifacts in Simultaneous L-Band InSAR and GPS Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1 227-1 239 doi: 10.1109/TGRS.2011.2164805
|
[2] |
Zhu W, Ding X L, Jung H S, et al. Mitigation of Ionospheric Phase Delay Error for SAR Interferometry: An Application of FR-Based and Azimuth Offset Methods[J]. Remote Sensing Letters, 2017, 8 (1): 58-67 doi: 10.1080/2150704X.2016.1235808
|
[3] |
Calais E, Minster J B. GPS Detection of Ionospheric Perturbations Following the January 17, 1994, Northridge Earthquake[J]. Geophysical Research Letters, 1995, 22(9): 1 045-1 048 doi: 10.1029/95GL00168
|
[4] |
马一方, 姜卫平, 席瑞杰. 利用全球电离层地图分析芦山地震电离层异常变化[J]. 武汉大学学报·信息科学版, 2015, 40(9): 1 274-1 278 doi: 10.13203/j%20.whu%20g%20is20130683
Ma Yifang, Jiang Weiping, Xi Ruijie. Analysis of Seismo-Ionospheric Anomalies in Vertical Total Electron Content of GIM for Lushan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1 274-1 278 doi: 10.13203/j%20.whu%20g%20is20130683
|
[5] |
Jakowski N, Heise S, Wehrenpfennig A, et al. GPS/GLONASS-Based TEC Measurements as a Contributor for Space Weather Forecast[J]. Journal of Atmospheric and Solar - Terrestrial Physics, 2002, 64(6): 729-735 http://www.cosmic.ucar.edu/related_papers/2002_jakowski_tec.pdf
|
[6] |
许超钤, 姚宜斌, 张豹, 等. 2010- 08-01太阳风暴对电离层及GPS测量的影响分析[J]. 武汉大学学报·信息科学版, 2013, 38(6): 689-693 http://ch.whu.edu.cn/article/id/2672
Xu Chaoqian, Yao Yibin, Zhang Bao, et al. Impact of the Ionosphere and GPS Surveying Caused by Solar Storms on August 1, 2010[J]. Geomatics and Information Science of Wuhan University, 2013, 38 (6): 689-693 http://ch.whu.edu.cn/article/id/2672
|
[7] |
Wu M J, Guo P, Fu N F, et al. Topside Correction of IRI by Global Modeling of Ionospheric Scale Height Using COSMIC Radio Occultation Data[J]. Journal of Geophysical Research: Space Physics, 2016, 121(6): 5 675-5 692 doi: 10.1002/2016JA022785
|
[8] |
Liu L B, Le H J, Chen Y D, et al. New Aspects of the Ionospheric Behavior over Millstone Hill During the 30-Day Incoherent Scatter Radar Experiment in October 2002[J]. Journal of Geophysical Research: Space Physics, 2019, 124(7): 6 288-6 295 doi: 10.1029/2019JA026806
|
[9] |
Xu F L, Li Z S, Zhang K F, et al. An Investigation of Optimal Machine Learning Methods for the Prediction of ROTI[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 1-15 http://www.cnki.com.cn/Article/CJFDTotal-CHBX202002001.htm
|
[10] |
Bilitza D. International Reference Ionosphere 2000 [J]. Radio Science, 2001, 36(2): 261-275 doi: 10.1029/2000RS002432
|
[11] |
马朝忠, 朱建青, 韩松辉. 基于ARIMA模型的卫星钟差异常值探测的模型选择方法[J]. 武汉大学学报·信息科学版, 2020, 45(2): 167-172 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202002002.htm
Ma Chaozhong, Zhu Jianqing, Han Songhui. Model Selection Method Based on ARIMA Model in Outliers Detection of Satellite Clock Offset[J]. Geomatics and Information Science of Wuhan University, 2020, 45 (2): 167-172 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202002002.htm
|
[12] |
Meyer F, Nicoll J. Mapping Ionospheric TEC Using Faraday Rotation in Full- Polarimetric L-Band SAR Data[C]//The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008
|
[13] |
Rosen P A, Hensley S, Chen C. Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data[C]// IEEE Radar Conference, Arlington, Texas, USA, 2010
|
[14] |
Jehle M, Frey O, Small D, et al. Measurement of Ionospheric TEC in Spaceborne SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2 460-2 468 doi: 10.1109/TGRS.2010.2040621
|
[15] |
Pi X Q, Freeman A, Chapman B, et al. Imaging Ionospheric Inhomogeneities Using Spaceborne Synthetic Aperture Radar[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A4): A04303
|
[16] |
Wang C, Zhang M, Xu Z W, et al. TEC Retrieval from Spaceborne SAR Data and Its Applications[J]. Journal of Geophysical Research: Space Physics, 2014, 119(10): 8 648-8 659 doi: 10.1002/2014JA020078
|
[17] |
Kim J S, Papathanassiou K. SAR Observation of Ionosphere Using Range/Azimuth Sub-Bands[C]// The 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014
|
[18] |
Wang C, Guo W L, Zhao H S, et al. Improving the Topside Profile of Ionosonde with TEC Retrieved from Spaceborne Polarimetric SAR[J]. Sensors, 2019, 19(3): 516-526 doi: 10.3390/s19030516
|
[19] |
Freeman A. Calibration of Linearly Polarized Polarimetric SAR Data Subject to Faraday Rotation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1 617-1 624 doi: 10.1109/TGRS.2004.830161
|
[20] |
Quegan S. A Unified Algorithm for Phase and CrossTalk Calibration of Polarimetric Data-Theory and Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1): 89-99 doi: 10.1109/36.285192
|
[21] |
Bickel S H, Bates R H T. Effects of Magneto-Ionic Propagation on the Polarization Scattering Matrix[J]. Proceedings of the IEEE, 1965, 53(8): 1 089- 1 091 doi: 10.1109/PROC.1965.4097
|
[22] |
Chen J, Quegan S. Improved Estimators of Faraday Rotation in Spaceborne Polarimetric SAR Data[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 846-850 doi: 10.1109/LGRS.2010.2047002
|
[23] |
Li L, Zhang Y S, Dong Z, et al. New Faraday Rotation Estimators Based on Polarimetric Covariance Matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 133-137 doi: 10.1109/LGRS.2013.2250478
|
[24] |
Kim J S, Papathanassiou K. Correction of Ionospheric Effects on SAR Interferometry Using a Com bined TEC Estimator[J]. Acta Cybernetica, 2013, 20(1): 127-146 http://elib.dlr.de/87072
|
[25] |
张静, 刘经南, 李丛. 国际参考电离层模型的研究与探讨[J]. 桂林理工大学学报, 2017, 37(1): 114-119 https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201701016.htm
Zhang Jing, Liu Jingnan, Li Cong. Research and Discussion on the International Reference Ionosphere Model[J]. Journal of Guilin University of Technology, 2017, 37(1): 114-119 https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX201701016.htm
|
[1] | GUO Wenfei, ZHU Mengmeng, GU Shengfeng, ZUO Hongming, CHEN Jinxin. GNSS Precise Time-Frequency Receiver Clock Steering Model and Parameter Design Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1126-1133. DOI: 10.13203/j.whugis20220458 |
[2] | SUN Leyuan, YANG Jun, GUO Xiye, HUANG Wende. Frequency Performance Evaluation of BeiDou-3 Satellite Atomic Clocks[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200486 |
[3] | WU Yiwei, YANG Bin, XIAO Shenghong, WANG Maolei. Atomic Clock Models and Frequency Stability Analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232. DOI: 10.13203/j.whugis20180058 |
[4] | AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091 |
[5] | LI Mingzhe, ZHANG Shaocheng, HU Youjian, HOU Weizhen. Comparison of GNSS Satellite Clock Stability Based on High Frequency Observations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1490-1495, 1503. DOI: 10.13203/j.whugis20160537 |
[6] | WANG Ning, WANG Yupu, LI Linyang, ZHAI Shufeng, LV Zhiping. Stability Analysis of the Space-borne Atomic Clock Frequency for BDS[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1256-1263. DOI: 10.13203/j.whugis20150806 |
[7] | LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542 |
[8] | HUANG Guanwen, YU Hang, GUO Hairong, ZHANG Juqing, FU Wenju, TIAN Jie. Analysis of the Mid-long Term Characterization for BDS On-orbit Satellite Clocks[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 982-988. DOI: 10.13203/j.whugis20140827 |
[9] | MAO Yue, CHEN Jianpeng, DAI Wei, JIA Xiaolin. Analysis of On-board Atomic Clock Stability Influences[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1182-1186. |
[10] | GUO Hairong, YANG Yuanxi. Analyses of Main Error Sources on Time-Domain Frequency Stability for Atomic Clocks of Navigation Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 218-221. |