DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
Citation: DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842

A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics

Funds: The National High Technology Research and Development Program of China (863 Program), No. 2013AA122301; Hunan Province Science Fund for Distinguished Young Scholars, No.14JJ1007; Hunan Provincial Innovation Foundation for Postgraduate, No. CX2014B051.
More Information
  • Received Date: May 03, 2015
  • Published Date: December 04, 2015
  • The paper presents a new method of modeling spatio-temporal sequence data by considering spatial scale characteristics, where original data is regarded as the combination of a general trend term representing at a larger scale and a local bias term representing at a smaller scale. The original data is first converted into a larger-scale data that represents the general trend of original data. Then, this general trend term is removed and the left part is the bias term of original data. Finally, prediction models of the trend term and the bias term are respectively built, and the combination of the two models is used to predict the original spatio-temporal sequence. Application in annual precipitation and daily average of PM2.5 concentration shows that this proposed method can be used to obtain multi-scale spatial predictions, and is better in accuracy than those models without consideration of spatial scale characteristics.
  • [1]
    Martin R L,Oeppen J E. The Identification of Regional Forecasting Models Using Space: Time Correlation Functions[J]. Transactions of the Institute of British Geographers, 1975, 66: 95-118
    [2]
    Cliff A D,Ord J K. Space-time Modeling with an Application to Regional Forecasting[J]. Transactions of the Institute of British Geographers, 1975, 64: 119-128
    [3]
    Kamarianakis Y, Prastacos P. Space-time Modeling of Traffic Flow [J]. Computers & Geosciences, 2005, 31(2): 119-133
    [4]
    Cheng T, Wang J Q, Li X. Space-time Series Modeling by Artificial Neural Network[C]. International Conference on Earth Observation Data Processing and Analysis (ICEODPA), Wuhan,China, 2008
    [5]
    Wang J, Cheng T, Haworth J. Space-time Kernels[J]. International Archives of the Photogrammetry, 2010, 38: 57-62
    [6]
    Wang Jiaqiu, Deng Min, Cheng Tao, et al. Spatio-temporal Series Data Analysis and Modeling[M]. Beijing: Science Press, 2012(王佳璆, 邓敏, 程涛, 等. 时空序列数据分析和建模[M]. 北京: 科学出版社, 2012)
    [7]
    Pei Tao, Zhou Chenghu, Luo Jiancheng, et al. Review on the Proceeding of Spatial Data Mining Research[J]. Journal of Image and Graphics, 2001, 6(9): 854-870(裴韬, 周成虎, 骆剑承, 等. 空间数据知识发现研究进展评述[J]. 中国图像图形学报, 2001, 6(9): 854-870)
    [8]
    Li Lin, Ying Shen. Fundamental Problem on Spatial Scale[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 199-203(李霖, 应申. 空间尺度基础性问题研究[J]. 武汉大学学报·5信息科学版, 2005, 30(3): 199-203)
    [9]
    Turner M G, O'Neill R V, Gardner R H, et al. Effects of Changing Spatial Scale on the Analysis of Landscape Pattern[J]. Landscape Ecology, 1989, 3(3-4): 153-162
    [10]
    Liu Kai, Wu Hehai, Ai Tinghua, et al. Three-tiered Concept of Scale of Geographical Information and Its Transformation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11): 1 178-1 181(刘凯, 毋河海, 艾廷华, 等. 地理信息尺度的三重概念及其变换[J]. 武汉大学学报·5信息科学版, 2008, 33(11): 1 178-1 181)
    [11]
    Hu Yunfeng, Xu Zhiying, Liu Yue, et al. A Review of the Scaling Issues of Geospatial Data[J]. Advances in Earth Science, 2013, 28(3): 297-304(胡云锋, 徐芝英, 刘越, 等. 地理空间数据的尺度转换[J]. 地球科学进展, 2013, 28(3): 297-304)
    [12]
    Meng Bin, Wang Jinfeng. A Review on the Methodology of Scaling with Geo-data[J]. Acta Geographica Sinica, 2005, 60(2): 277-288(孟斌, 王劲峰. 地理数据尺度转换方法研究进展[J]. 地理学报, 2005, 60(2): 277-288)
    [13]
    Luo Jiancheng, Zhou Chenghu, Liang Yi, et al. Scale-space Theory Based Regionalization for Spatial Cells[J]. Acta Geographica Sinica, 2002, 57(2): 167-173(骆剑承, 周成虎, 梁怡, 等. 多尺度空间单元区域划分方法[J]. 地理学报, 2002, 57(2): 167-173)
    [14]
    Wang Haiqi, Wang Jinfeng. A K-means Adapted Algorithm Based Spatial Contiguity Relations[J]. Computer Engineering, 2006, 32(31): 50-51(王海起, 王劲峰. 一种基于空间邻接关系的k-means聚类改进算法[J]. 计算机工程, 2006, 32(21): 50-51)
    [15]
    Wei Erhu, Li Zhiqiang, Gong Guangyu. et al. Fitting Prediction of Pole Motion Time Series Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1 420-1 424(魏二虎, 李智强, 龚光裕, 等. 极移时间序列模型的拟合与预测[J]. 武汉大学学报·5信息科学版, 2013, 38(12): 1 420-1 424)
    [16]
    Peng Ling, Niu Ruiqing, Zhao Yannan. et al. Prediction of Landslide Displacement Based on KPCA and PSO-SRR[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 148-152(彭令, 牛瑞卿, 赵艳南, 等. 基于核主成分分析和粒子群优化支持向量机的滑坡位移预测[J]. 武汉大学学报·5信息科学版, 2013, 38(2): 148-152)
  • Cited by

    Periodical cited type(15)

    1. 肖泽辉,季青,庞小平,闫忠男. 利用海洋2B卫星数据反演南极海冰表面积雪厚度. 测绘地理信息. 2024(06): 64-68 .
    2. 张颖,刘建强,石立坚,蒋城飞. 极地海冰观测卫星的发展现状与展望. 遥感技术与应用. 2024(06): 1339-1352 .
    3. 陈国栋,陈钰,金涛勇,张志杰,李黎. 利用Cryosat-2 SAR模式数据确定北冰洋海平面模型. 大地测量与地球动力学. 2023(06): 606-611+621 .
    4. 于亚冉,王丽华,张梦悦. 基于CryoSat-2的北极海冰类型分类. 测绘与空间地理信息. 2022(01): 147-150 .
    5. 陈国栋,梁圣豪,孟子淇,朱家亨. 利用Cryosat-2数据确定格陵兰冰盖高程和体积变化. 苏州科技大学学报(自然科学版). 2022(01): 66-70+76 .
    6. 屈猛,赵羲,庞小平,雷瑞波. 北极冰间水道区域的物理过程和遥感观测研究进展. 地球科学进展. 2022(04): 382-391 .
    7. 高翔,庞小平,季青. 利用CryoSat-2测高数据研究南极威德尔海海冰出水高度时空变化. 武汉大学学报(信息科学版). 2021(01): 125-132 .
    8. 张婷,张杰,张晰. 基于CryoSat-2数据的2014—2018年北极海冰厚度分析. 海洋科学进展. 2020(03): 425-434 .
    9. 王志勇,王丽华,张晰,孙伟富,刘健. 雷达高度计在海冰厚度探测中的研究进展. 遥感信息. 2020(05): 1-8 .
    10. 满富康,夏文韬,张杰,柯长青. 基于OSI-SAF微波遥感数据的北极一年冰和多年冰研究. 极地研究. 2019(01): 69-83 .
    11. 吴星泉,张胜军,车德福. 利用CryoSat-2卫星测高资料确定北极海冰干舷高. 测绘通报. 2019(07): 64-68 .
    12. 庞小平,刘清全,季青. 北极一年海冰表面积雪深度遥感反演与时序分析. 武汉大学学报(信息科学版). 2018(07): 971-977 .
    13. 蒋广敏,戴利,代欣. 基于改进遗传算法的镀层氧化膜厚度测量研究. 周口师范学院学报. 2018(05): 121-124 .
    14. 王蔓蔓,柯长青,邵珠德. 基于CryoSat-2卫星测高数据的北极海冰体积估算方法. 海洋学报. 2017(03): 135-144 .
    15. 袁乐先,李斐,张胜凯,朱婷婷,左耀文. 利用ICESat/GLAS数据研究北极海冰干舷高度. 武汉大学学报(信息科学版). 2016(09): 1176-1182 .

    Other cited types(20)

Catalog

    Article views PDF downloads Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return