WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
Citation: WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094

Satellite Video Motion Detection Supported by Decision Tree Weak Classification

Funds: 

The National Key Research and Development Program of China 2016YFB0500801

the National Natural Science Foundation of China 91538106

the National Natural Science Foundation of China 41501503

the National Natural Science Foundation of China 41601490

the National Natural Science Foundation of China 41501383

Fund of Zhuhai Introducing Innovative Team ZH0111-0405-160001-P-WC

Local Innovation Team of Guangdong Pearl River Talent Scheme 2017BT01G115

More Information
  • Author Bio:

    WU Jiaqi, PhD candidate, majors in satellite video data processing. E-mail: jiaqiwu@126.com

  • Corresponding author:

    JIANG Yonghua, PhD, associate professor. E-mail: jiangyh@whu.edu.cn

  • Received Date: September 01, 2018
  • Published Date: August 04, 2019
  • For the satellite video motion detection, two issues are harmful to the subsequent application. One is the local parallax"pseudo-motion", and the other is"Ghost pseudo-motion", which may lead to serious error detection. For these two issues, a decision tree-supported local differentiated updating background subtraction method is proposed. Firstly, the initial background model is established. One other parameter, the updating factor, is added based on the ViBe model. Each pixel in the model has a unique dynamic updating factor. In the next place, we perform the pixel-wise motion detection based on the modified model. The detection results are segmented into targets by using the connected component analysis-labeling method. Afterwards, the decision tree model is established based on the target characteristics. And the targets can be weekly classified into different categories. In the end, the background model samples and the factor parameters are differentiated updated according to the categories results. Using SkySat and Jilin No. 1 video data to do experiments. The experimental results show that our proposed method has favourable effect and performance, with the recall rate of results superior to 0.909. Comparing with the classical ViBe method, the error detection removal rate is superior to 90%.
  • [1]
    张过.卫星视频处理与应用进展[J].应用科学学报, 2016, 34(4):361-370 doi: 10.3969/j.issn.0255-8297.2016.04.001

    Zhang Guo. Satellite Video Processing and Applications[J]. Journal of Applied Sciences, 2016, 34(4):361-370 doi: 10.3969/j.issn.0255-8297.2016.04.001
    [2]
    吴佳奇, 张过, 汪韬阳, 等.结合运动平滑约束与灰度特征的卫星视频点目标跟踪[J].测绘学报, 2017, 46(9):1135-1146 http://d.old.wanfangdata.com.cn/Periodical/chxb201709009

    Wu Jiaqi, Zhang Guo, Wang Taoyang, et al. Satellite Video Point-Target Tracking in Combination with Motion Smoothness Constraint and Grayscale Feature[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9):1135-1146 http://d.old.wanfangdata.com.cn/Periodical/chxb201709009
    [3]
    刘慧, 李清泉, 高春仙, 等.利用C_SURF配准的空基视频运动目标检测[J].武汉大学学报·信息科学版, 2014, 39(8):951-955 http://ch.whu.edu.cn/CN/abstract/abstract3050.shtml

    Liu Hui, Li Qingquan, Gao Chunxian, et al. Moving Target Detection Using C_SURF Registration[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):951-955 http://ch.whu.edu.cn/CN/abstract/abstract3050.shtml
    [4]
    王霞, 张过, 沈欣, 等.顾及像面畸变的卫星视频稳像[J].测绘学报, 2016, 45(2):194-198 http://d.old.wanfangdata.com.cn/Periodical/chxb201602011

    Wang Xia, Zhang Guo, Shen Xin, et al. Satellite Video Stabilization with Geometric Distortion[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(2):194-198 http://d.old.wanfangdata.com.cn/Periodical/chxb201602011
    [5]
    Yun K, Lim J, Jin Y C. Scene Conditional Background Update for Moving Object Detection in a Moving Camera[J]. Pattern Recognition Letters, 2017, 88:57-63 doi: 10.1016/j.patrec.2017.01.017
    [6]
    闵卫东, 郭晓光, 韩清.改进的ViBe算法及其在交通视频处理中的应用[J].光学精密工程, 2017, 25(3):806-811 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201703035

    Min Weidong, Guo Xiaoguang, Han Qing. An Improved ViBe Algorithm and Its Application in Traffic Video Processing[J]. Optics and Precision Engineering, 2017, 25(3):806-811 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201703035
    [7]
    Barnich O, Vanroogenbroeck M. ViBe:A Universal Background Subtraction Algorithm for Video Sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6):1709-1724 doi: 10.1109/TIP.2010.2101613
    [8]
    He L, Chao Y, Suzuki K, et al. Fast ConnectedComponent Labeling[J]. Pattern Recognition, 2009, 42(9):1977-1987 doi: 10.1016/j.patcog.2008.10.013
    [9]
    张琳, 陈燕, 李桃迎, 等.决策树分类算法研究[J].计算机工程, 2011, 37(13):66-67, 70 doi: 10.3969/j.issn.1000-3428.2011.13.020

    Zhang Lin, Chen Yan, Li Taoying, et al. Research on Decision Tree Classification Algorithms[J]. Computer Engineering, 2011, 37(13):66-67, 70 doi: 10.3969/j.issn.1000-3428.2011.13.020
    [10]
    张剑清, 段艳.一种结合分水岭与决策树C5.0的极化SAR分类方法[J].武汉大学学报·信息科学版, 2014, 39(8):891-896 http://ch.whu.edu.cn/CN/abstract/abstract3039.shtml

    Zhang Jianqing, Duan Yan. A Supervised Classification Method of Polarimetric Synthetic Aperture Radar Data Using Watershed Segmentation and Decision Tree C5.0[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):891-896 http://ch.whu.edu.cn/CN/abstract/abstract3039.shtml
    [11]
    黄宇达, 范太华.决策树ID3算法的分析与优化[J].计算机工程与设计, 2012, 33(8):3089-3093 doi: 10.3969/j.issn.1000-7024.2012.08.036

    Huang Yuda, Fan Taihua. ID3 Algorithm for Decision Tree Analysis and Optimization[J]. Computer Engineering and Design, 2012, 33(8):3089-3093 doi: 10.3969/j.issn.1000-7024.2012.08.036
    [12]
    Wang Y, Jodoin P M, Porikli F, et al. CDnet 2014: An Expanded Change Detection Benchmark Dataset[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, USA, 2014 https://ieeexplore.ieee.org/document/6910011
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views PDF downloads Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return