WANG Mi, WEI Yu, YANG Bo, ZHOU Xiao. Extraction and Analysis of Global Elevation Control Points from ICESat-2 /ATLAS Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184-192. DOI: 10.13203/j.whugis20200531
Citation: WANG Mi, WEI Yu, YANG Bo, ZHOU Xiao. Extraction and Analysis of Global Elevation Control Points from ICESat-2 /ATLAS Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184-192. DOI: 10.13203/j.whugis20200531

Extraction and Analysis of Global Elevation Control Points from ICESat-2 /ATLAS Data

Funds: 

The National Natural Science Foundation of China 61825103

The National Natural Science Foundation of China 91838303

Scientific Research Program of Hubei Provincial Department of Land and Resources [2018]844-11

More Information
  • Author Bio:

    WANG Mi, PhD, professor, specializes in the theories and methods of geometric processing and intelligent service of high-resolution satellites. E-mail: wangmi@whu.edu.cn

  • Received Date: November 05, 2020
  • Published Date: February 04, 2021
  • ICESat-2's laser data has the highest elevation accuracy up to date, and its observation range covers the global land, which can be used as basic data for the high-precision global ground elevation reference. Based on ICESat-2 /ATLAS global laser data product ATL08, this paper obtained ICESat-2 laser points on the global land, and studied the method of extracting global elevation control points based on elevation reference and attribute parameters, and used reference elevation data to verify their accuracy. The obtained laser points were verified by airborne laser data in Shandong experimental field and Henan experimental field in China. And the root mean square error (RMSE) were 1.11 m and 1.39 m respectively before filtering. After filtering with elevation reference and slope constraints, the mean RMSE were 0.69 m and 0.57 m respectively, and the corresponding data retention rates were 61.38% and 60.00%, which proved that the proposed method in this paper could effectively improve the elevation accuracy while ensuring the data retention rate. The airborne laser data from the western, central and eastern United States experimental fields were used to verify the elevation control points. The RMSE of each experimental field was less than 0.9 m, which proved that the extraction method proposed in this paper could be used to extract elevation control points worldwide. This method can automatically extract global elevation control points with high density and high precision, providing support for the stereo mapping of domestic high-resolution satellites without or with few ground control points, and assistance in evaluating the quality of DEM/DSM products.
  • [1]
    张重阳.基于GLAS数据的广义高程控制点库的建设与应用[D].阜新: 辽宁工程技术大学, 2015

    Zhang Chongyang. Construction and Application of Generalized Elevation Control Point Database Based on GLAS Data[D]. Fuxin: Liaoning Project Technology University, 2015
    [2]
    李国元, 唐新明, 张重阳, 等.多准则约束的ICESat/GLAS高程控制点筛选[J].遥感学报, 2017, 21(1):96-104 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701009.htm

    Li Guoyuan, Tang Xinming, Zhang Chongyang, et al. Multi-criteria Constraint Algorithm for Selecting ICESat/GLAS Data as Elevation Control Points[J]. Journal of Remote Sensing, 2017, 21(1):96-104 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201701009.htm
    [3]
    González J H, Bachmann M, Scheiber R, et al. Definition of ICESat Selection Criteria for Their Use as Height References for TanDEM-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2750-2757 doi: 10.1109/TGRS.2010.2041355
    [4]
    Duong H, Lindenbergh R, Pfeifer N, et al. ICESat Full-Waveform Altimetry Compared to Airborne Laser Scanning Altimetry over the Netherlands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10):3365-3378 doi: 10.1109/TGRS.2009.2021468
    [5]
    胡国军, 方勇, 张丽.星载激光雷达的发展与测绘应用前景分析[J].测绘技术装备, 2015, 17(2):34-37 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKJ201502011.htm

    Hu Guojun, Fang Yong, Zhang Li. Development and Application Prospect Analysis of Spaceborne LiDAR[J]. Geomatics Technology and Equipment, 2015, 17(2):34-37 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKJ201502011.htm
    [6]
    Abdalati W, Zwally H J, Bindschadler R, et al. The ICESat-2 Laser Altimetry Mission[J]. Proceedings of the IEEE, 2010, 98(5):735-751 doi: 10.1109/JPROC.2009.2034765
    [7]
    Neumann T A, Martino A J, Markus T, et al. The Ice, Cloud, and Land Elevation Satellite-2 Mission: A Global Geolocated Photon Product Derived from the Advanced Topographic Laser Altimeter System[J]. Remote Sensing of Environment, 2019, 233: 111325 doi: 10.1016/j.rse.2019.111325
    [8]
    Zwally H J, Schutz B, Abdalati W, et al. ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land[J]. Journal of Geodynamics, 2002, 34(3):405-445
    [9]
    Markus T, Neumann T A, Martino A J, et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation[J]. Remote Sensing of Environment, 2017, 190:260-273 doi: 10.1016/j.rse.2016.12.029
    [10]
    NASA. ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2) TECHNICAL SPECS[OL]. https://icesat-2.gsfc.nasa.gov/science/specs, 2019
    [11]
    夏少波, 王成, 习晓环, 等. ICESat-2机载试验点云滤波及植被高度反演[J].遥感学报, 2014, 18(6):1199-1207 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201406007.htm

    Xia Shaobo, Wang Cheng, Xi Xiaohuan, et al. Point Cloud Filtering and Tree Height Estimation Using Airborne Experiment Data of ICESat-2[J]. Journal of Remote Sensing, 2014, 18(6):1199-1207 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201406007.htm
    [12]
    National Snow and Ice Data Center. Data at NSIDC[OL]. https://nsidc.org/data, 2020
    [13]
    Dandabathula G, Verma M, Rao S S, et al. Evaluation of ICESat-2 ATL08 Data Product: Performance Assessment in Inland Water[J]. European Environment, 2020, 1(3):1-7
    [14]
    Neuenschwander A, Pitts K, Jelley B, et al. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land-Vegetation Along-Track Products (ATL08) [OL]. https://nsidc.org/sites/nsidc.org/files/technical-references/ICESat2_ATL08_ATBD_r003.pdf, 2020
    [15]
    Zhu Xiaoxiao, Nie Sheng, Wang Cheng, et al. A Ground Elevation and Vegetation Height Retrieval Algorithm Using Micro-Pulse Photon-Counting LiDAR Data[J]. Remote Sensing, 2018, 10(12): 1962 doi: 10.3390/rs10121962
    [16]
    Stoker J. USGS 3DEP LiDAR Point Cloud Now Available as Amazon Public Dataset[OL]. https://www.usgs.gov/news/usgs-3dep-lidar-point-cloud-now-available-amazon-public-dataset, 2019
    [17]
    Gesch D B, Oimoen M J, Evans G A. Accuracy Assessment of the US Geological Survey National Elevation Dataset, and Comparison with Other Large-Area Elevation Datasets—SRTM and ASTER[OL]. https://pubs.usgs.gov/of/2014/1008/, 2020
    [18]
    Imagery ⓒ2020 Google. Google Maps[OL]. https://maps.google.com, 2020
    [19]
    李振洪, 李鹏, 丁咚, 等.全球高分辨率数字高程模型研究进展与展望[J].武汉大学学报·信息科学版, 2018, 43(12): 1927-1942 doi: 10.13203/j.whugis20180295

    Li Zhenhong, Li Peng, Ding Dong, et al. Research Progress of Global High Resolution Digital Elevation Models[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1927-1942 doi: 10.13203/j.whugis20180295
    [20]
    地理国情监测云平台. 全国分省坡度分级数据产品 [OL]. http://www.dsac.cn/DataProduct/Detail/200803, 2020

    Geographical Information Monitoring Cloud Platform. Slope Grading Data Products by Province in China[OL]. http://www.dsac.cn/DataProduct/Detail/200803, 2020
  • Related Articles

    [1]TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254
    [2]LI Yongtao, ZHAO Ang, LI Jianwen, CHE Tongyu, PAN Lin, CHEN Chen. Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78. DOI: 10.13203/j.whugis20190286
    [3]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [4]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [5]WANG Zemin, CHE Guowei, AN Jiachun. Comprehensive Observation and Analysis of Weddell Sea Anomaly in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1421-1427. DOI: 10.13203/j.whugis20150270
    [6]NIE Wenfeng, HU Wusheng, PAN Shuguo, SONG Yubing. )Extraction of Regional Ionospheric TEC from GPS Dual Observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1022-1027. DOI: 10.13203/j.whugis20130046
    [7]TANG Jun, YAO Yibin, CHEN Peng, ZHANG Shun. Prediction Models of Ionospheric TEC Improved by EMD Method[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 408-411.
    [8]CHEN Peng, YAO Yibin, WU Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270.
    [9]LIN Jian, WU Yun, ZHU Fuying. Ionosphere TEC Anomalous Disturbance of Pre-seism[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 975-978.
    [10]MENG Yang, WANG Zemin, E Dongchen. Ionopsheric TEC Anomalies of Pre-Earthquake Based on GPS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 81-84.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(28)

Catalog

    Article views (3678) PDF downloads (527) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return