CHENG Penggen, YUE Chen. Evaluation of Urban Ecological Environment and Its Relationship with Human Activities with Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1927-1937. DOI: 10.13203/j.whugis20200382
Citation: CHENG Penggen, YUE Chen. Evaluation of Urban Ecological Environment and Its Relationship with Human Activities with Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1927-1937. DOI: 10.13203/j.whugis20200382

Evaluation of Urban Ecological Environment and Its Relationship with Human Activities with Multi-source Data

Funds: 

The National Natural Science Foundation of China 41861052

The National Natural Science Foundation of China 41861062

the National Key Research and Development Program of China 2017YFB0503704

More Information
  • Author Bio:

    CHENG Penggen, PhD, professor, specializes in theory and application of geographic information system, urban ecological environment comprehensive evaluation. E-mail: pgcheng1964@163.com

  • Corresponding author:

    YUE Chen, master. E-mail: 872438008@qq.com

  • Received Date: November 07, 2020
  • Available Online: November 15, 2022
  • Published Date: November 04, 2022
  •   Objectives  To explore the relationship between urban ecological environment and human activities is an important research content in the current urbanization process. With the in-depth development of the era of big data, multi-source data ubiquitous in the Internet has been fully excavated, which has played an important role in promoting the research of urban ecological environment.
      Methods  Based on multisource data, we propose to construct human activity indicators (residential area walkability index, street vitality index, urban function mixing index) using point of interest(POI), OpenStreetMap (OSM) and residential area data, and urban ecological environment indicator (remote sensing ecological index)using remote sensing images. Combing machine learning models such as polynomial regression(PLR), random forest regression(RFR), extreme gradient boosting regression(XGB) and support vector regression machine(SVR), it is effective to make regression analysis on urban ecological environment and human activity indicators. By comparing the performance of different models in this dataset, the relationship between the urban ecological environment and human activities is revealed.
      Results  We demonstrate the application of our method using a case study of Nanchang city. The results show that: (1) The three indexes of human activities all present a central high and gradually decrease to the surroundings, while the urban ecological environment indicators show an opposite trend. (2) From the analysis of the performance results of each model on the dataset, XGB has the best regression effect, followed by PLR.(3)There is a strong negative correlation between the urban ecological environment and human activities, and the street vitality index, the urban function mixing index are more relevant to the urban ecological environment, and the walkability index of the residential area is less relevant to the urban ecological environment. (4) In areas where human activities have less impact, the urban ecological environment will be disturbed by other factors, resulting in the low prediction accuracy, while the prediction accuracy in areas with strong human activities is high.
      Conclusions  Using multisource data and machine learning models can provide an important reference for exploring the relationship between urban ecological environment and human activities.
  • [1]
    李德仁. 脑认知与空间认知: 论空间大数据与人工智能的集成[J]. 武汉大学学报∙信息科学版, 2018, 43(12): 1761-1767 doi: 10.13203/j.whugis20180411

    Li Deren. Brain Cognition and Spatial Cognition: On Integration of Geo-spatial Big Data and Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1761-1767 doi: 10.13203/j.whugis20180411
    [2]
    邓敏, 蔡建南, 杨文涛, 等. 多模态地理大数据时空分析方法[J]. 地球信息科学学报, 2020, 22(1): 41-56 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202001007.htm

    Deng Min, Cai Jiannan, Yang Wentao, et al. Spatio-temporal Analysis Methods for Multi-modal Geographic Big Data[J]. Journal of Geo-information Science, 2020, 22(1): 41-56 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202001007.htm
    [3]
    刘瑜, 詹朝晖, 朱递, 等. 集成多源地理大数据感知城市空间分异格局[J]. 武汉大学学报∙信息科学版, 2018, 43(3): 327-335 doi: 10.13203/j.whugis20170383

    Liu Yu, Zhan Zhaohui, Zhu Di, et al. Incorporating Multi-source Big Geo-data to Sense Spatial Heterogeneity Patterns in an Urban Space[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 327-335 doi: 10.13203/j.whugis20170383
    [4]
    刘瑜, 姚欣, 龚咏喜, 等. 大数据时代的空间交互分析方法和应用再论[J]. 地理学报, 2020, 75(7): 1523-1538 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202007015.htm

    Liu Yu, Yao Xin, Gong Yongxi, et al. Analytical Methods and Applications of Spatial Interactions in the Era of Big Data[J]. Acta Geographica Sinice, 2020, 75(7): 1523-1538 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB202007015.htm
    [5]
    岳文泽, 章佳民, 刘勇, 等. 多源空间数据整合视角下的城市开发强度研究[J]. 生态学报, 2019, 39(21): 7914-7926 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201921011.htm

    Yue Wenze, Zhang Jiamin, Liu Yong, et al. Measuring Urban Development Intensity Based on the Integration of Multi-source Spatial Data[J]. Acta Ecologica Sinica, 2019, 39(21): 7914-7926 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201921011.htm
    [6]
    海晓东, 刘云舒, 赵鹏军, 等. 基于手机信令数据的特大城市人口时空分布及其社会经济属性估测: 以北京市为例[J]. 北京大学学报(自然科学版), 2020, 56(3): 518-530 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202003014.htm

    Hai Xiaodong, Liu Yunshu, Zhao Pengjun, et al. Using Mobile Phone Data to Estimate the Temporal-Spatial Distribution and Socioeconomic Attributes of Population in Megacities: A Case Study of Beijing[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 518-530 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ202003014.htm
    [7]
    谷岩岩, 焦利民, 董婷, 等. 基于多源数据的城市功能区识别及相互作用分析[J]. 武汉大学学报∙信息科学版, 2018, 43(7): 1113-1121 doi: 10.13203/j.whugis20160192

    Gu Yanyan, Jiao Limin, Dong Ting, et al. Spatial Distribution and Interaction Analysis of Urban Functional Areas Based on Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1113-1121 doi: 10.13203/j.whugis20160192
    [8]
    朱婷婷, 涂伟, 乐阳, 等. 利用地理标签数据感知城市活力[J]. 测绘学报, 2020, 49(3): 365-374 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202003012.htm

    Zhu Tingting, Tu Wei, Yue Yang, et al. Sensing Urban Vibrancy Using Geo-tagged Data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 365-374 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202003012.htm
    [9]
    徐慧敏, 胡守庚. 夜光遥感视角下的中国城市规模的时空演变[J]. 武汉大学学报∙信息科学版, 2021, 46(1): 40-49 doi: 10.13203/j.whugis20190330

    Xu Huimin, Hu Shougeng. Chinese City Size Evolution Under Perspective of Nighttime Light Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 40-49 doi: 10.13203/j.whugis20190330
    [10]
    陈逸敏, 黎夏. 机器学习在城市空间演化模拟中的应用与新趋势[J]. 武汉大学学报∙信息科学版, 2020, 45(12): 1884-1889 doi: 10.13203/j.whugis20200423

    Chen Yimin, Li Xia. Applications and New Trends of Machine Learning in Urban Simulation Research[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1884-1889 doi: 10.13203/j.whugis20200423
    [11]
    赵鹏军, 曹毓书. 基于多源地理大数据与机器学习的地铁乘客出行目的识别方法[J]. 地球信息科学学报, 2020, 22(9): 1753-1765 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202009002.htm

    Zhao Pengjun, Cao Yushu. Identifying Metro Trip Purpose Using Multi-source Geographic Big Data and Machine Learning Approach[J]. Journal of Geo-information Science, 2020, 22(9): 1753-1765 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX202009002.htm
    [12]
    塔娜, 曾屿恬, 朱秋宇, 等. 基于大数据的上海中心城区建成环境与城市活力关系分析[J]. 地理科学, 2020, 40(1): 60-68 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX202001008.htm

    Ta Na, Zeng Yutian, Zhu Qiuyu, et al. Relationship Between Built Environment and Urban Vitality in Shanghai Downtown Area Based on Big Data[J]. Scientia Geographica Sinica, 2020, 40(1): 60-68 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX202001008.htm
    [13]
    李智轩, 何仲禹, 张一鸣, 等. 绿色环境暴露对居民心理健康的影响研究: 以南京为例[J]. 地理科学进展, 2020, 39(5): 779-791 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202005007.htm

    Li Zhixuan, He Zhongyu, Zhang Yiming, et al. Impact of Greenspace Exposure on Residents? Mental Health: A Case Study of Nanjing City[J]. Progress in Geography, 2020, 39(5): 779-791 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202005007.htm
    [14]
    翁敏, 李霖, 苏世亮. 空间数据分析案例式实验教程[M]. 北京: 科学出版社, 2019

    Weng Min, Li Lin, Su Shiliang. Spatial Data Analysis Case-Based Experimental Tutorial[M]. Beijing: Science Press, 2019
    [15]
    中华人民共和国住房和城乡建设部. 城市居住区规划设计标准: GB50180—2018[S]. 北京: 中国建筑工业出版社, 2018

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standards for Planning and Design of Urban Residential Areas: GB50180—2018[S]. Beijing: China Building Industry Press, 2018
    [16]
    李苗裔, 马妍, 孙小明, 等. 基于多源数据时空熵的城市功能混合度识别评价[J]. 城市规划, 2018, 42(2): 97-103 https://www.cnki.com.cn/Article/CJFDTOTAL-CSGH201802017.htm

    Li Miaoyi, Ma Yan, Sun Xiaoming, et al. Application of Spatial and Temporal Entropy Based on Multi-source Data for Measuring the Mix Degree of Urban Functions[J]. City Planning Review, 2018, 42(2): 97-103 https://www.cnki.com.cn/Article/CJFDTOTAL-CSGH201802017.htm
    [17]
    徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24): 7853-7862 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201324027.htm

    Xu Hanqiu. A Remote Sensing Urban Ecological Index and Its Application[J]. Acta Ecologica Sinica, 2013, 33(24): 7853-7862 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201324027.htm
    [18]
    Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32
    [19]
    Hu Lirong, He Shenjing, Han Zixuan, et al. Monitoring Housing Rental Prices Based on Social Media: An Integrated Approach of Machine Learning Algorithms and Hedonic Modeling to Inform Equitable Housing Policies[J]. Land Use Policy, 2019, 82: 657-673
  • Related Articles

    [1]LI Qingzhu, LI Zhining, ZHANG Yingtang, FAN Hongbo, YIN Gang. Integrated Vector Calibration of Magnetic Gradient Tensor System Using Nonlinear Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 714-722, 730. DOI: 10.13203/j.whugis20170161
    [2]LIU Bin, GUO Jiming, SHI Junbo, WU Dijun. A GPS Height Fitting Method Based on the EGM2008 Model and Terrain Correction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 554-558. DOI: 10.13203/j.whugis20160249
    [3]ZHAN Yinhu, ZHENG Yong, ZHANG Chao, ZHANG Zhongkai, LI Zhuyang, MA Gaofeng. Spherical Circle Fitting Algorithm and Its Application on Azimuth Determination by Observing the Moon[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1514-1519. DOI: 10.13203/j.whugis20130562
    [4]WEI Erhu, LI Zhiqiang, GONG Guangyu, ZHANG Shuai. Fitting and Prediction of Pole Motion Time Series Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1420-1424.
    [5]SHU Chanfang, LI Fei, HAO Weifeng. Geoid/Quasigeoid Fitting Based on Equivalent Point Masses[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 231-234.
    [6]ZENG Qihong, MAO Jianhua, LI Xianhua, LIU Xuefeng. Planar-Fitting Filtering Algorithm for LIDAR Points Cloud[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 25-28.
    [7]WANG Jiexian. A Method for Fitting of Conicoid in Industrial Measurement[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 47-50.
    [8]ZHANG Mengjun, SHU Hong, LIU Yan, WANG Tao. An Adaptive Thresholding Approach Based on Spatial Curved Surface Fitting[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 395-398.
    [9]ZHOU Yunyao, CAI Yaxian. Correlation Processing Techniques in Frequency-domain Calibration for Very Broadband Seismometer—Raising Sinewave Calibration Precision Under Strong Noise by Using Vertical Correlation Method[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 632-635.
    [10]GAO Wei, XU Shaoquan. Subregional Fitting and Transforming GPS Height into Normal Height[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 908-911.
  • Cited by

    Periodical cited type(4)

    1. 梁志国,梁家奕. 正弦参数拟合误差量子化阶梯分布机理分析. 计量学报. 2024(10): 1555-1561 .
    2. 宁一鹏,毕京学,姚国标,桑文刚,郭秋英. 简化磁力计非线性误差模型的快速校正算法. 测绘科学. 2021(01): 36-41+55 .
    3. 于向前,刘斯,肖池阶,曲亚楠,宗秋刚,陈鸿飞,邹鸿,施伟红,王永福,陈傲,宋思宇,高爽,邵思霈. 基于椭球拟合的三轴磁强计两步校准法. 仪表技术与传感器. 2021(04): 52-56 .
    4. 张莺莺,张晓明,高丽珍,薛羽阳,刘俊. 弹载磁测系统等效安装误差的在线标定与补偿. 计算机测量与控制. 2021(08): 158-162 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return