LI Jingzhong, GAO Aji, CHEN Kai, ZHANG Yong. A Fourier Energy Spectrum Model for DEM Multi-scale Representation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1938-1945. DOI: 10.13203/j.whugis20200315
Citation: LI Jingzhong, GAO Aji, CHEN Kai, ZHANG Yong. A Fourier Energy Spectrum Model for DEM Multi-scale Representation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1938-1945. DOI: 10.13203/j.whugis20200315

A Fourier Energy Spectrum Model for DEM Multi-scale Representation

Funds: 

The National Natural Science Foundation of China 42271454

the Cooperative Project of Production and Education of Education Ministry 202102136007

More Information
  • Author Bio:

    LI Jingzhong, PhD, associate professor, specializes in spatial data mining and multiple representations. E-mail: 00009232@whu.edu.cn

  • Corresponding author:

    GAO Aji, PhD candidate. E-mail: gaoaji@whu.edu.cn

  • Received Date: December 13, 2020
  • Available Online: November 15, 2022
  • Published Date: November 04, 2022
  •   Objectives  The accurate and fast multi-scale representation of digital elevation model (DEM) is the key basis for its multi-scale application. We aim to propose an automated and high-quality multi-scale representation method for DEM.
      Methods  We construct a model of DEM data for multi-scale representation, according to the corresponding relationship of "low-frequency - high-energy - large scale" in energy spectral density, and relate topographic semantic features in simplification.
      Results  The result shows that this model can dynamically derive DEM data at different scales. The figure of contour lines derived from this model can meet the basic principle of "retaining main topographic features and abandoning secondary topographic features"in topographic expression, spatial cognition and cartographic generalization. Quantificationally compared with traditional DEM simplification methods in elevation and slope shape, this method shows similar or better effect in statistical and structural significance.
      Conclusions  The model based on the Fourier energy spectrum can effectively express DEM data with different scale requirements.
  • [1]
    刘学军, 卢华兴, 仁政, 等. 论DEM地形分析中的尺度问题[J]. 地理研究, 2007(3): 433-442 doi: 10.3321/j.issn:1000-0585.2007.03.002

    Liu Xuejun, Lu Huaxing, Ren Zheng, et al. Scale Issues in Digital Terrain Analysis and Terrain Modeling[J]. Geographical Research, 2007(3): 433-442 doi: 10.3321/j.issn:1000-0585.2007.03.002
    [2]
    郭伟玲. 坡度和坡长尺度效应与尺度变换研究[D]. 杨凌: 教育部水土保持与生态环境研究中心, 2012

    Guo Weiling. Study on Scaling Effect and Transformation of Slope Gradient and Slope Length[D]. Yangling: Research Center of Soil and Water Conservation and Ecological Environment, 2012
    [3]
    李精忠, 艾廷华, 王洪. 一种基于谷地填充的DEM综合方法[J]. 测绘学报, 2009, 38(3): 272-275 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200903014.htm

    Li Jingzhong, Ai Tinghua, Wang Hong. The DEM Generalization Based on the Filling Valley Coverage[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(3): 272-275 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200903014.htm
    [4]
    李精忠, 李冬琳. 一种基于汇水区合并的DEM综合方法[J]. 武汉大学学报∙信息科学版, 2015, 40(8): 1095-1099 doi: 10.13203/j.whugis20130558

    Li Jingzhong, Li Donglin. A DEM Generalization by Catchment Area Combination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1095-1099 doi: 10.13203/j.whugis20130558
    [5]
    Wu Q, Chen Y, Wilson J P, et al. An Effective Parallelization Algorithm for DEM Generalization Based on CUDA[J]. Environmental Modelling and Software, 2019, 114: 64-74 doi: 10.1016/j.envsoft.2019.01.002
    [6]
    杨族桥, 郭庆胜, 牛冀平, 等. DEM多尺度表达与地形结构线提取研究[J]. 测绘学报, 2005, 34(2): 134-137 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200502008.htm

    Yang Zuqiao, Guo Qingsheng, Niu Jiping, et al. A Study on Multi-scale DEM Representation and Topographic Feature Line Extraction[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(2): 134-137 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200502008.htm
    [7]
    刘学军, 王彦芳, 晋蓓. 利用点扩散函数进行DEM尺度转换[J]. 武汉大学学报∙信息科学版, 2009, 34(12): 1458-1462 http://ch.whu.edu.cn/article/id/1468

    Liu Xuejun, Wang Yanfang, Jin Bei. A Upscaling Method of Digital Elevation Model with Point Spread Function[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1458-1462 http://ch.whu.edu.cn/article/id/1468
    [8]
    刘鹏程, 艾廷华, 毕旭. 傅立叶级数支持下的等高线多尺度表达模型[J]. 武汉大学学报∙信息科学版, 2013, 38(2): 221-224 http://ch.whu.edu.cn/article/id/6109

    Liu Pengcheng, Ai Tinghua, Bi Xu. Multi-scale Representation Model for Contour Based on Fourier Series[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 221-224 http://ch.whu.edu.cn/article/id/6109
    [9]
    吴凡, 祝国瑞. 基于小波分析的地貌多尺度表达与自动综合[J]. 武汉大学学报∙信息科学版, 2001, 26(2): 170-176 http://ch.whu.edu.cn/article/id/5163

    Wu Fan, Zhu Guorui, Multi-scale Representation and Automatic Generalization of Relief Based on Wavelet Analysis[J]. Geomatics and Information Science of Wuhan University, 2001, 26(2): 170-176 http://ch.whu.edu.cn/article/id/5163
    [10]
    郝大磊, 闻建光, 肖青, 等. 利用能量因子进行DEM升尺度转换精度评价[J]. 武汉大学学报∙信息科学版, 2019, 44(4): 570-577 doi: 10.13203/j.whugis20170126

    Hao Dalei, Wen Jianguang, Xiao Qing, et al. An Accuracy Assessment Method for DEM Upscaling Based on Energy Factor[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 570-577 doi: 10.13203/j.whugis20170126
    [11]
    Lawford G J. Fourier Series and the Cartographic Line[J]. International Journal of Geographical Information Science, 2006, 20(1): 31-52
    [12]
    李精忠, 张津铭. 一种基于傅里叶变换的光滑边界面状要素Morphing方法[J]. 武汉大学学报∙信息科学版, 2017, 42(8): 1104-1109 doi: 10.13203/j.whugis20150157

    Li Jingzhong, Zhang Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109 doi: 10.13203/j.whugis20150157
    [13]
    肖天元, 刘鹏程, 艾廷华, 等. 一种傅里叶信息度量的曲线分形描述与多尺度表达方法[J]. 武汉大学学报∙信息科学版, 2020, 45(1): 119-125 doi: 10.13203/j.whugis20180336

    Xiao Tianyuan, Liu Pengcheng, Ai Tinghua, et al. A Fractal Description Method of Fourier Expansion Curve Based on Information Metric[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 119-125 doi: 10.13203/j.whugis20180336
    [14]
    杨述斌, 李永全. 数字信号处理实践教程[M]. 武汉: 华中科技大学出版社, 2007

    Yang Shubin, Li Yongquan. Digital Signal Processing Practical Course[M]. Wuhan: Huazhong University of Science and Technology Press, 2007
    [15]
    赵彬彬. 地质异常各向异性定量化方法及其应用研究[D]. 北京: 中国地质大学(北京), 2008

    Zhao Binbin. Quantitative Study on Anisotropy of Geological Anomaly and Its Application[D]. Beijing: China University of Geosciences(Beijing), 2008
    [16]
    冈萨雷斯, 伍兹. 数字图像处理[M]. 3版. 北京: 电子工业出版社, 2011

    Gonzalez, Woods. Digital Image Processing[M]. 3rd ed. Beijing: Electronic Industry Press, 2011
    [17]
    刘凯, 毋河海, 艾廷华, 等. 地理信息尺度的三重概念及其变换[J]. 武汉大学学报∙信息科学版, 2008, 33(11): 1178-1181 http://ch.whu.edu.cn/article/id/1746

    Liu Kai, Wu Hehai, Ai Tinghua, et al. Three-Tiered Concepts of Scale of Geographical Information and Its Transformation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11): 1178-1181 http://ch.whu.edu.cn/article/id/1746
    [18]
    杜张颖, 陈松林. 不同DEM尺度下推方法的精度差异性分析[J]. 测绘与空间地理信息, 2019, 42(11): 66-69 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201911018.htm

    Du Zhangying, Chen Songlin. Analysis of Precision Difference in DEM Scale-Down Methods[J]. Geomatics and Spatial Information Technology, 2019, 42(11): 66-69 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201911018.htm

Catalog

    Article views (660) PDF downloads (89) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return