LIU Bin, GE Daqing, WANG Shanshan, LI Man, ZHANG Ling, WANG Yan, WU Qiong. Combining Application of TOPS and ScanSAR InSAR in Large-Scale Geohazards Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1756-1762. DOI: 10.13203/j.whugis20200259
Citation: LIU Bin, GE Daqing, WANG Shanshan, LI Man, ZHANG Ling, WANG Yan, WU Qiong. Combining Application of TOPS and ScanSAR InSAR in Large-Scale Geohazards Identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1756-1762. DOI: 10.13203/j.whugis20200259

Combining Application of TOPS and ScanSAR InSAR in Large-Scale Geohazards Identification

Funds: 

The National Key Research and Development Program of China 2017YFB0502700

the National Natural Science Foundation of China 41504048

More Information
  • Author Bio:

    LIU Bin, PhD, senior engineer, specializes in data processing of space-borne and ground-based InSAR techniques. E-mail: lbin0226@163.com

  • Corresponding author:

    LI Man, senior engineer. E-mail: digong820@163.com

  • Received Date: May 28, 2020
  • Published Date: November 18, 2020
  •   Objectives  InSAR technique has the ability to detect small deformation of the earth's surface. However, it is still a great challenge to identify the potential geohazards using InSAR in wide area. How to obtain reliable InSAR products in "large-scale, fast and economic" is still the key work of general survey for geohazards identification.
      Methods  Sentinel-1 TOPS and ALOS-2 ScanSAR data have large-wide swaths of hundreds of kilometers. Therefore, range split spectrum, Stacking-InSAR and other technologies are comprehensively used to identify geohazards using Sentinel-1 TOPS and ALOS-2 ScanSAR data in the Jinsha River area from Panzhihua City to Wudongde hydropower station. Firstly, sub-swath images of ScanSAR are processed with each other by differential interferometry, and range split spectrum method is used to estimate and compensate ionospheric delay for SAR interferometry.Then, TOPS full swath ima- ges are processed with perpendicular and temporal baselines of less than 200 m and 60 d, respectively. Finally, linear deformation rates of TOPS and ScanSAR data are estimated using Stacking-InSAR technique.
      Results  Forty-six potential geohazards are identified using Sentinel-1 TOPS data (January 2018 to January 2019), and ALOS-2 ScanSAR data (February 2017 to February 2020) have identified forty-four potential geohazards. Field investigations show that there are almost deformation phenomena in the location of identified geohazards by InSAR.
      Conclusions  The combined applications of TOPS and ScanSAR modes can fully grasp the situation of geological hazards as far as possible.
  • [1]
    许强, 董秀军, 李为乐.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报·信息科学版, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088

    Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geoha- zards[J].Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966 doi: 10.13203/j.whugis20190088
    [2]
    葛大庆, 戴可人, 郭兆成, 等.重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J].武汉大学学报·信息科学版, 2019, 44(7): 949-956 doi: 10.13203/j.whugis20190094

    Ge Daqing, Dai Keren, Guo Zhaocheng, et al. Early Identification of Serious Geological Hazards with Integrated Remote Sensing Technologies: Thoughts and Recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):949-956 doi: 10.13203/j.whugis20190094
    [3]
    彭大雷.黄土滑坡潜在隐患早期识别研究: 以甘肃黑方台为例[D].成都: 成都理工大学, 2018

    Peng Dalei. Study on Early Recognition for Potentially Loess Landslide: A Case Study at HeifangtaiTerrace, Gansu Province, China[D]. Chendu: Chendu University of Technology, 2018
    [4]
    李振洪, 宋闯, 余琛, 等.卫星雷达遥感在滑坡灾害探测和监测中的应用:挑战与对策[J].武汉大学学报·信息科学版, 2019, 44(7): 967-979 doi: 10.13203/j.whugis20190098

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):967-979 doi: 10.13203/j.whugis20190098
    [5]
    Meyer F J, Chotoo K, Chotoo S D, et al.The Influen- ce of Equatorial Scintillation on L-band SAR Image Quality and Phase[J]. IEEE Transactions on Geoscienceand Remote Sensing, 2016, 54(2): 869-880 doi: 10.1109/TGRS.2015.2468573
    [6]
    Virk A S, Singh A, Mittal S K. Advanced MT-InSAR Landslide Monitoring: Methods and Trends[J]. J Remote Sens GIS, 2018, 7: 225 http://www.researchgate.net/publication/324649263_Advanced_MT-InSAR_Landslide_Monitoring_Methods_and_Trends
    [7]
    Torres R, Snoeij P, Geudtner D, et al. GMES Sentinel-1 Mission[J]. Remote Sensing of Environment, 2012, 120: 9-24 doi: 10.1016/j.rse.2011.05.028
    [8]
    Scheiber R, Moreira A. Coregistration of Interferometric SAR Images Using Spectral Diversity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2 179-2 191 doi: 10.1109/36.868876
    [9]
    Natsuaki R, Motohka T, Shimada M, et al. Burst Misalignment Evaluation for ALOS-2 PALSAR-2 ScanSAR-ScanSAR Interferometry[J]. Remote Sensing, 2017, 9(3): 216 doi: 10.3390/rs9030216
    [10]
    Jung H S, Lee D T, Lu Z, et al. Ionospheric Correction of SAR Interferograms by Multiple-Aperture Interferometry[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3 191-3 199 doi: 10.1109/TGRS.2012.2218660
    [11]
    吴吉民.金沙江乌东德库区(库首-龙川江河口段)岸坡地质灾害发育分布规律及库岸稳定性评价[D].成都: 成都理工大学, 2009

    Wu Jimin. The Disciplinarian on the Development and Distributing of Geo-disaster and Stability Evaluation of the Bank Slopein Wudongde Reservoir Area of the Jinsha River[D]. Chendu: Chendu University of Technology, 2018
    [12]
    Tadono T, Nagai H, Ishida H, et al. Generation of the 30 m-Mesh Global Digital Surface Model by ALOS Prism[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, 41(B4): 157-162 http://adsabs.harvard.edu/abs/2016ISPAr41B4..157T
    [13]
    Gomba G, Parizzi A, Zan F D, et al. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms:The Split-Spectrum Method[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1 446-1 461 doi: 10.1109/TGRS.2015.2481079
    [14]
    Liang C R, Fielding E J. Measuring Azimuth Deformation with L-band ALOS-2 ScanSAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2 725-2 738 doi: 10.1109/TGRS.2017.2653186
    [15]
    Wegmüller U, Werner C, Frey O, et al. Reformulating the Split-Spectrum Method to Facilitate the Estimation and Compensation of the Ionospheric Phase in SAR Interferograms[J].Procedia Computer Science, 2018, 138: 318-325 doi: 10.1016/j.procs.2018.10.045
    [16]
    刘斌, 葛大庆. L波段ScanSAR模式在滑坡早期识别中的应用探讨[J].大地测量与地球动力学, 2020, 40(10):85-88 http://www.cnki.com.cn/Article/CJFDTotal-DKXB202010017.htm

    Liu Bin, Ge Daqing. Application of L-band ScanSAR Mode in Early Identification of Landslide[J]. Journal of Geodesyand Geodynamics, 2020, 40(10):85-88 http://www.cnki.com.cn/Article/CJFDTotal-DKXB202010017.htm
    [17]
    Goldstein R M, Werner C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21):4 035-4 038 doi: 10.1029/1998GL900033
    [18]
    Sandwell D T, Price E J. Phase Gradient Approach to Stacking Interferograms[J].Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30 183-30 204 doi: 10.1029/1998JB900008
    [19]
    Massonnet D, Feigl K L. Radar Interferometry and Its Application to Changes in the Earth's Surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500 doi: 10.1029/97RG03139
    [20]
    雍章弟.攀枝花市三区地质灾害分布特征及防治[J].四川地质学报, 2014, 34(2):228-233 http://www.cqvip.com/QK/83117X/201402/50153316.html

    Yong Zhangdi. Distribution and Control of Geoha- zards in 3 Districts, Panzhihua[J]. Acta Geologica Sichuan, 2014, 34(2): 228-233 http://www.cqvip.com/QK/83117X/201402/50153316.html
    [21]
    程先锋, 祝传兵, 齐武福, 等.云南省禄劝县普福滑坡形成条件、发展趋势与防治对策[J].矿产与地质, 2015, 29(3):395-401 http://d.wanfangdata.com.cn/Periodical/kcydz201503021

    Cheng Xianfeng, Zhu Chuanbing, Qi Wufu, et al. Formation Conditions, Development Tendency and Preventive Measures of Pufu Landslide in Luquan of Yunnan[J]. Mineral Resources and Geology, 2015, 29(3):395-401 http://d.wanfangdata.com.cn/Periodical/kcydz201503021
  • Related Articles

    [1]LI Yongwei, XU Linrong, CHEN Yunhao, DENG Zhixing. Intergrated Space-Air-Train-Ground Muti-source Techniques for Early Detection of Subgrade Disasters and Service Status of Railway Subgrade[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1392-1406. DOI: 10.13203/j.whugis20230404
    [2]FU Hao, LI Weile, LU Huiyan, XU Qiang, DONG Xiujun, GUO Chen, XIE Yi, WANG Dong, LIU Gang, MA Zhigang. Early Detection and Monitoring of Potential Landslides in Danba County Based on the Space-Air-Ground Investigation System[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 734-746. DOI: 10.13203/j.whugis20220418
    [3]WANG Yi, LI Shengfu, MA Hongsheng, JIA Yang, JIANG Yuyang. Multi-method Early Identification and Route Optimization of Vulnerable Geological Environment Hazards on Mountainous Highways[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230214
    [4]LI Menghua, ZHANG Lu, DONG Jie, CAI Jiehua, LIAO Mingsheng. Detection and Monitoring of Potential Landslides Along Minjiang River Valley in Maoxian County, Sichuan Using Radar Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1529-1537. DOI: 10.13203/j.whugis20210367
    [5]DAI Cong, LI Weile, LU Huiyan, YANG Fan, XU Qiang, JIAN Ji. Active Landslides Detection in Zhouqu County, Gansu Province Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 994-1002. DOI: 10.13203/j.whugis20190457
    [6]CAI Jiehua, ZHANG Lu, DONG Jie, DONG Xiujun, LIAO Mingsheng, XU Qiang. Detection and Monitoring of Post-Earthquake Landslides in Jiuzhaigou Using Radar Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1707-1716. DOI: 10.13203/j.whugis20200263
    [7]XU Qiang. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659. DOI: 10.13203/j.whugis20200043
    [8]XU Qiang, DONG Xiujun, LI Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. DOI: 10.13203/j.whugis20190088
    [9]GE Daqing, DAI Keren, GUO Zhaocheng, LI Zhenhong. Early Identification of Serious Geological Hazards with Integrated Remote Sensing Technologies: Thoughts and Recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956. DOI: 10.13203/j.whugis20190094
    [10]ZHANG Lu, LIAO Mingsheng, DONG Jie, XU Qiang, GONG Jianya. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry-A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049. DOI: 10.13203/j.whugis20180181
  • Cited by

    Periodical cited type(4)

    1. 张露露,黄希芬. 联合均值和散度逆高斯回归模型的参数估计. 统计与决策. 2024(09): 49-54 .
    2. 董婷,符潍奇,邵攀,高利鹏,武昌东. 基于改进全连接条件随机场的SAR影像变化检测. 自然资源遥感. 2023(03): 134-144 .
    3. 王昶,张永生,王旭. 基于变分法与Markov随机场模糊局部信息聚类法的SAR影像变化检测. 武汉大学学报(信息科学版). 2021(06): 844-851 .
    4. 高新,靳国旺,熊新,徐娇. 融合差异图与高斯混合模型相结合的SAR图像变化检测. 测绘科学技术学报. 2020(01): 68-73 .

    Other cited types(6)

Catalog

    Article views (1371) PDF downloads (283) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return