Citation: | WU Chunjun, SUN Yueqiang, WANG Xianyi, BAI Weihua, MENG Xiangguang, DU Qifei. Assessment of Position Performance of BDS for Space Application Based on FY-3D Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200187 |
[1] |
Birmingham W P, Miller B L, Stein W L. Experimental Results of Using the GPS for Landsat 4 onboard Navigation[J]. Navigation, 1983, 30(3):244-251
|
[2] |
Bauer F H, Kate H, Lightsey E G. Spaceborne GPS Current Status and Future Visions[C]. 1998 IEEE Aerospace Conference Proceedings, 1998,3
|
[3] |
Montenbruck O, Markgraf M, Garcia-Fernandez M, et al. GPS for Microsatellites-Status and Perspectives[M]. Small Satellites for Earth Observation, 2007:165-174
|
[4] |
Li Liu, Zhang Tianqiao, Zhou Shanshi, et al. Improved design of control segment in BDS-3[J]. Navigation, 2019, 66(1):37-47
|
[5] |
Yang Yuanxi, Gao Weiguang, Guo Shuren, et al. Introduction to BeiDou-3 navigation satellite system[J]. Navigation, 2019, 66(1):7-18
|
[6] |
China Satellite Navigation Office. China Satellite Navigation Office. BeiDou Navigation Satellite System Open Service Performance Standard (Version 1.0)[S]. Beijing:Dec.2013
|
[7] |
Chen Xi, Zhao Sihao, Wang Menglu, et al. Space-borne BDS Receiver for LING QIAO Satellite:Design, Implementation and Preliminary In-orbit Experiment Results[J]. GPS Solutions, 2016, 20(10):837-847
|
[8] |
Wang Fuhong, Ling Sanli, Gong Xuewen, et al. Decimeter-Level Orbit Determination for FY3C Satellite Based on Space-Borne GPS/BDS Measurements[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1):1-6(王甫红,凌三力,龚学文,等. 风云三号C卫星星载GPS/BDS分米级实时定轨模型研究[J]. 武汉大学学报·信息科学版2020,45(1):1-6)
|
[9] |
Jiang Kecai, Li Min, Zhao Qile, et al. BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements[J]. Sensors, 2017, 17(11):2460
|
[10] |
Xiong Chao, Lu Chuanfang, Zhu Jun, et al. Orbit Determination using Real Tracking Data from FY3C-GNOS[J]. Advances in Space Research, 2017, 60(3):543-556
|
[11] |
Yang Yuanxi, Xu Yangyin, Li Jinlong, et al. Progress and Performance Evaluation of BeiDou Global Navigation Satellite System:Data Analysis Based on BDS-3 Demonstration System[J]. Science China Earth Sciences, 2018,61(3):614-624
|
[12] |
Zhang Zhiteng, Li Bofeng, Nie Liangwei, et al. Initial Assessment of BeiDou-3 Global Navigation Satellite System:Signal Quality, RTK and PPP[J]. GPS Solutions, 2019, 23:111
|
[13] |
Lei W Y, Wu G C, Tao X X, et al. BDS Satellite-induced Code Multipath:Mitigation and Assessment in New-generation IOV Satellites[J]. Advances in Space Research, 2017,60(12):2672-2679
|
[14] |
Wang Dongwei, Tian Yusen, Sun YueQiang, et al. Preliminary in-Orbit Evaluation of GNOS on FY3D Satellite[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018:9161-9163
|
[15] |
Du Qifei, Liu Congliang, Li Wei, et al. The On-Orbit Performance of FY-3D GNOS[C]. 2019 International Geoscience and Remote Sensing Society Symposium. 2019:7669-7671
|
[16] |
Sun Yueqiang, Liu Congliang, Tian Yusen, et al. The Status and Progress of Fengyun-3e GNOS Ⅱ Mission for GNSS Remote Sensing[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium. 2019:5181-8184
|
[17] |
Cai Yuerong, Bai Weihua, Wang Xianyi, et al. In-orbit Performance of GNOS on-board FY3-C and the Enhancements for FY-3D Satellite[J]. Advances in Space Research, 2017, 60(12):2812-2821
|
[18] |
Wu Yun, Liu Xiaolei, Liu Wanke, et al. Long-term Behavior and Statistical Characterization of BeiDou Signal-in-space Errors[J]. GPS Solutions, 2017, 21:1907-1922
|
[19] |
Zou Deyue, Cui Yongen, Zhang Qi, et al. Orbit Determination Algorithm and Performance Analysis of High-Orbit Spacecraft Based on GNSS[C]. IET Communications, 2019,12(20):3377-3382
|
[20] |
Zhou Chen, Guo Shuren, Meng Yinan, et al. BDS-3 Spaceborne Receiver Design Applying to Space Service Volume[C]. China Satellite Navigation Conference (CSNC) 2018 Proceedings. 2018:341-354.
|
[21] |
Montenbruck O, Steigenberger P, Hauschild A. Multi-GNSS Signal-in-space Range Error Assessment-Methodology and Results[J]. Advances in Space Research, 61(12):3020-3038
|
[22] |
He Yilei. Quality Analysis of Satellite Signal for BDS-3 Simplest System[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3):394-402(何义磊. 北斗三号最简系统卫星信号质量分析[J]. 武汉大学学报(信息科学版), 2020, 45(3):394-402)
|
[23] |
Estey L, Meertens C. TEQC:The Multi-Purpose Toolkit for GPS/GLONASS Data[J]. GPS Solutions, 1999,3:42-49
|
[24] |
Wanninger L, Beer S. BeiDou Satellite-induced Code Pseudorange Variations:Diagnosis and Therapy[J]. GPS Solutions, 2015, 19:639-648
|
[25] |
Montenbruck O, Gill E. Satellite Orbits-Models, Methods and Applications[M]. 2000, Springer.
|
[26] |
Zakharenkova I, Cherniak I. Underutilized Spaceborne GPS Observations for Space Weather Monitoring[J]. Space Weather, 2018,16(4):345-362
|
[27] |
Zakharenkova I, Astafyeva E, Cherniak I. GPS and in situ Swarm Observations of the Equatorial Plasma Density Irregularities in the Topside Ionosphere[J]. Planets and Space, 2016, 68:120
|
[28] |
Jakowski N, Wilken V, Mayer C. Space Weather Monitoring by GPS Measurements on board CHAMP[J]. Space Weather,2007,5(8)
|
[29] |
Lin C H, Richmond A D, Liu J Y, et al. Theoretical Study of New Plasma Structures in the Low-latitude Ionosphere During a major Magnetic Storm[J]. JGR Space Physics, 2009114(A5):303
|
[30] |
Chen Yiding, Liu Libo, Le Huijun, et al. Equatorial Ionization Anomaly in the Low-latitude Topside Ionosphere:Local Time Evolution and Longitudinal Difference[J], JGR Space Physics, 2016, 121(7):7166-7182
|
[31] |
(孙伟, 安家春, 王泽民. 利用掩星技术研究南极地区顶部电离层特性[J]. 武汉大学学报(信息科学版), 2015, 40(11):1446-1452
Sun Wei, An Jiachun, Wang Zemin. Analysis of Topside Ionosphere in Antarctica Based on Radio Occultation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11):1446-1452
|
[1] | LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462 |
[2] | Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133. |
[3] | FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948. |
[4] | QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99. |
[5] | WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26. |
[6] | LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609. |
[7] | LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998. |
[8] | YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254. |
[9] | P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762. |
[10] | Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345. |