PAN Xiao, ZHANG Cuijuan, WU Lei, YAN Xiaoqian. Spatial-Textal Correlation Analysis Based on Crowdsource Geospatial Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1910-1918. DOI: 10.13203/j.whugis20200185
Citation: PAN Xiao, ZHANG Cuijuan, WU Lei, YAN Xiaoqian. Spatial-Textal Correlation Analysis Based on Crowdsource Geospatial Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1910-1918. DOI: 10.13203/j.whugis20200185

Spatial-Textal Correlation Analysis Based on Crowdsource Geospatial Data

Funds: 

The Natural Science Foundation Project of Hebei Province F2018210109

Hebei Provincial Department of Education Key Project ZD2018040

The 4th Outstanding Youth Science Fund Project of Shijiazhuang Tiedao University Z661250444

More Information
  • Author Bio:

    PAN Xiao, PhD, associate professor, specializes in data management, mobile computing, privacy protection. E-mail: smallpx@stdu.edu.cn

  • Received Date: April 25, 2020
  • Published Date: December 04, 2020
  • Crowdsource geospatial data is one kind of open geographic data collected by the public. A wealth of spatial information and knowledge are hidden in crowdsource geospatial data. Check-in data is one of the representative crowdsource geospatial data. Most existing work on spatial-textual objects, such as evaluating the similarity of two spatial-textual objects in spatial keyword query, considers that spatial similarity and text similarity are independent of each other. According to the first law of geography: Everything is connected; the closer two objects are, the stronger their connection is. We explore the correlation between spatial information and textual information in the real check-in data scrawled from the location based social networks. After data preprocess and geographic mapping, we computed the textual attribute values in each region. Then, we use the exploratory spatial analysis to analyze the global spatial autocorrelation and local spatial autocorrelation in different the spatial scales, that is different states in United States and the two cities such as New York and Los Angeles, respectively. The results show that different textual attributes in different regions have different global spatial autocorrelation; the results obtained from the local autocorrelation analysis show the phenomenon that the textual attributes get together. Both the above results provide the basis for research on the assumption that "the texts are similar in the near space". Furthermore, the conclusion can help departments or enterprises to make reasonable decisions.
  • [1]
    Goodchild M F. Citizens as Sensors: The World of Volunteered Geography[J]. GeoJournal, 2007, 69 (4):211-221 doi: 10.1007/s10708-007-9111-y
    [2]
    Heipke C. Crowdsourcing Geospatial Data[J]. Journal of Photogrammetry and Remote Sensing, 2010, 65(6):550-557 doi: 10.1016/j.isprsjprs.2010.06.005
    [3]
    王明, 李清泉, 胡庆武, 等.面向众源开放街道地图空间数据的质量评价方法[J].武汉大学学报·信息科学版, 2013, 38 (12) :1 490-1 494 http://ch.whu.edu.cn/article/id/2823

    Wang Ming, Li Qingquan, Hu Qingwu, et al.Quality Analysis on Crowd Sourcing Geograph Data with OpenStreetMap Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1 490-1 494 http://ch.whu.edu.cn/article/id/2823
    [4]
    周晓光, 赵肄江, 李光强, 等.顾及信誉的众源时空数据模型[J].武汉大学学报·信息科学版, 2018, 43(1): 10-16 doi: 10.13203/j.whugis20150378

    Zhou Xiaoguang, Zhao Yijiang, Li Guangqiang, et al. Crowdsourcing Spatio-Temporal Data Model Considering Reputation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 10-16 doi: 10.13203/j.whugis20150378
    [5]
    孟斌, 王劲峰, 张文忠, 等.基于空间分析方法的中国区域差异研究[J].地理科学, 2005, 25(4):393-399 doi: 10.3969/j.issn.1000-0690.2005.04.002

    Meng Bin, Wang Jinfeng, Zhang Wenzhong, et al. Evaluation of Regional Disparity in China Based on Spatial Analysis[J]. Geographic Science, 2005, 25(4):393-399 doi: 10.3969/j.issn.1000-0690.2005.04.002
    [6]
    陈冉, 王海起, 孟斌, 等.基于位置签到数据的城市空间分析与可视化[J].地理信息世界, 2017, 25(3):85-91 doi: 10.3969/j.issn.1672-1586.2017.03.017

    Chen Ran, Wang Haiqi, Meng Bin, et al. Urban Spatial Analysis and Visualization Based on Location Sign-in Data[J]. Geographic Information World, 2017, 25(3):85-91 doi: 10.3969/j.issn.1672-1586.2017.03.017
    [7]
    Reshef D N, Reshef Y A, Finucane H K, et al. Detecting Novel Associations in Large Data Sets[J]. Science, 2011, 334 (6 062):1 518-1 524
    [8]
    Speed T. A Correlation for the 21st Century[J]. Science, 2011, 334(6 062):1 502-1 503
    [9]
    Bao Jie, Zheng Yu, Mokbel F M. Location-Based and Preference-Aware Recommendation Using Sparse GEO-social Networking Data[C]. The 20th International Conference on Advances in Geographic Information System, Redondo Beach, California, USA, 2012
    [10]
    胡庆武, 王明, 李清泉.利用位置签到数据探索城市热点与商圈[J].测绘学报, 2014, 39(3):314-321

    Hu Qingwu, Wang Ming, Li Qingquan. Urban Hotspot and Commercial Area Exploration with Check-in Data[J].Journal of Surveying and Mapping, 2014, 39(3):314-321
    [11]
    高文秀, 朱俊杰, 侯建光.探索性数据分析在土地利用数据分析中的应用[J].武汉大学学报·信息科学版, 2009, 34(12): 1 502-1 506 http://ch.whu.edu.cn/article/id/1474

    Gao Wenxiu, Zhu Junjie, Hou Jianguang. Landuse Data Analysis with Exploratory Data Analysis Method[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1 502-1 506 http://ch.whu.edu.cn/article/id/1474
    [12]
    禹文豪, 艾廷华, 杨敏, 等.利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J].武汉大学学报·信息科学版, 2016, 41(2): 221-227 doi: 10.13203/j.whugis20140092

    Yu Wenhao, Ai Tinghua, Yang Min, et al.Detecting "Hot Spots" of Facility POIs Based on Kernel Density Estimation and Spatial Autocorrelation Technique[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 221-227 doi: 10.13203/j.whugis20140092
    [13]
    Diggle P J.空间统计学[M].北京:机械工业出版社, 2017
    [14]
    刘湘南, 黄方, 王平.GIS空间分析原理与方法[M].北京:科学出版社, 2008:189-190

    Liu Xiangnan, Huang Fang, Wang Ping. Principles and Methods of GIS Spatial Analysis[M]. Beijing : Science Press, 2008:189-190
    [15]
    胡青峰, 张子平, 何荣, 等.基于Geoda095i区域经济增长率的空间统计分析研究[J].测绘与空间地理信息, 2007, 30(2):53-37 doi: 10.3969/j.issn.1672-5867.2007.02.016

    Hu Qingfeng, Zhang Ziping, He Rong, et al.Spatial Statistical Analysis Based on Geoda095i Regional Economic Growth Rate[J]. Mapping and Spatial Geographic Information, 2007, 30(2):53-37 doi: 10.3969/j.issn.1672-5867.2007.02.016
    [16]
    王雪瑞, 葛斌华.我国生产性服务业空间效应研究-基于SLM、SEM模型的实证[J].中央财经大学学报, 2012(4):68-71, 96

    Wang Xuerui, Ge Binhua. Research on the Spatial Effect of China's Producer Service Industry-Based on the Empirical Study of SLM and SEM Models[J].Journal of Central University of Finance and Economics, 2012(4):68-71, 96
    [17]
    禹文豪, 艾廷华, 杨敏, 等.利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J].武汉大学学报·信息科学版, 2016, 41(2): 221-227 doi: 10.13203/j.whugis20140092

    Yu Wenhao, Ai Tinghua, Yang Min, et al. Detecting "Hot Spots" of Facility POIs Based on Kernel Density Estimation and Spatial Autocorrelation Technique[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 221-227 doi: 10.13203/j.whugis20140092
  • Related Articles

    [1]LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310
    [2]ZHOU Sha, NIU Jiqiang, XU Feng, PAN Xiaofang, ZHEN Wenjie, QIAN Haoyue. Estimating Gaze Directions for Pedestrian Navigation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 700-705,735. DOI: 10.13203/j.whugis20200465
    [3]FANG Hao, SONG Zhangtong, YANG Liu, MA Yitao, QIN Qianqing. Spatial Cognitive Elements of VR Mobile City Navigation Map[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1124-1130. DOI: 10.13203/j.whugis20180066
    [4]FANG Zhixiang, XU Hong, SHAW Shih-Lung, LI Qingquan, YUAN Shujun, LI Ling. Pedestrian Navigation Research Trend: From Absolute Space to Relative Space-Based Approach[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2173-2182. DOI: 10.13203/j.whugis20180170
    [5]LIU Tao, ZHANG Xing, LI Qingquan, FANG Zhixiang. An Indoor Pedestrian Route Planning Algorithm Based on Landmark Visibility[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 43-48. DOI: 10.13203/j.whugis20150387
    [6]ZHANG Qinghua, SUI Lifen, JIA Xiaolin, ZHU Yongxing. SIS Error Statistical Analysis of Beidou Satellite Navigation System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 271-274. DOI: 10.13203/j.whugis20120062
    [7]ZHANG Xing, LI Qingquan, FANG Zhixiang, HUANG Ling. Landmark and Branch-based Pedestrian Route Complexity and Selection Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1239-1242.
    [8]FENG Xin, WANG Hua, TAN Shusen. Multipath Performance Analysis for Navigation Signals in Different Pro-correlation Bandwidth and Correlator Spacing[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1191-1194.
    [9]GAN Yu, SUI Lifen. Real-time Detection and Processing of Noise Correlation in Kinematic Navigation and Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 909-913.
    [10]ZHANG Xing, LI Qingquan, FANG Zhixiang. An Approach of Generating Landmark Chain for Pedestrian Navigation Applications[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1240-1244.
  • Cited by

    Periodical cited type(6)

    1. 李渊,白焕霞,梁嘉祺,李锐,杜亚男,杨盟盛. 虚拟旅游空间记忆匹配性与影响因素研究——基于眼动实验和认知地图的分析. 旅游科学. 2024(10): 39-61 .
    2. 李宜倩,乔子轩,宋晓蕾. 产生追踪手势对个体寻路绩效增强的设计研究. 包装工程. 2023(22): 59-64+115 .
    3. 李宜倩,乔子轩,宋晓蕾. 产生追踪手势对个体寻路绩效增强的设计研究. 包装工程. 2023(20): 59-64+115 .
    4. 晋良海,方梅,张倩,陈云,邵波. 公共通道行人非理性切变行为效应仿真. 系统工程学报. 2023(05): 601-613 .
    5. 应申,苏俊如,刘之林,张雯博. 空间路线描绘:以大学生入学路线的心像地图为例. 测绘工程. 2022(01): 1-11 .
    6. 刘兵,孟立秋. 扩展现实与地理空间认知研究进展与展望. 武汉大学学报(信息科学版). 2022(12): 2047-2053 .

    Other cited types(7)

Catalog

    Article views (1261) PDF downloads (122) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return