LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310
Citation: LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310

Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone

  •   Objectives  With the rise of location service applications and the popularization of mobile smart terminals, the demand for high-precision navigation and positioning is extending from isolated areas to seamless whole areas, from professional groups to mass users. However, real-time, continuous, and complete pedestrian navigation still faces many challenges, such as occlusion of global navigation satellite system (GNSS) signals, frequent updates of Wi-Fi/ bluetooth low energy (BLE)/geomagnetic fingerprint databases, and smoothly switching in the transitional area of indoor and outdoor. In addition, the positioning sensors of popular mobile smart terminals are limited by cost and power consumption, and the observation data is generally noisy and poor in stability.
      Methods  Therefore, this paper proposes a pedestrian indoor and outdoor seamless positioning technology based on cloud-end collaboration of smartphone, which breaks through the crowd sourced collection and rapid update of the beacon fingerprint database, the precise positioning of the smart phone multi-sensor information fusion, and the indoor and outdoor seamless switching. We have developed a smartphone positioning application for pedestrians. The collaborative precision positioning enhancement information is provided by the location service platform and the multi-source observations data (GNSS, miniature inertial measurement unit (MIMU), Wi-Fi, BLE, magnetometer, barometer) are obtained by the smartphone.
      Results  The feild test results show that the outdoor positioning accuracy of ordinary users is better than 1.5 m, and indoor accuracy is about 1‒3 m.
      Conclusions  It supports thedemand of mass-market users for seamless and precise positioning indoors and outdoors.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return