LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310
Citation: LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310

Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone

Funds: 

The National Key Research and Development Program of China 2016YFB0501803

the Major Special Projects of Technological Innovation in Hubei Province 2019AAA043

the Wuhan Science and Technology Project 2020010601012185

More Information
  • Author Bio:

    LIU Wanke, PhD, professor, majors in precise positioning technology of GNSS and low-cost multi-sensor integration technology. E-mail: wkliu@sgg.whu.edu.cn

  • Corresponding author:

    YAO Yibin, PhD, professor. E-mail: ybyao@whu.edu.cn

  • Received Date: June 11, 2021
  • Published Date: December 04, 2021
  •   Objectives  With the rise of location service applications and the popularization of mobile smart terminals, the demand for high-precision navigation and positioning is extending from isolated areas to seamless whole areas, from professional groups to mass users. However, real-time, continuous, and complete pedestrian navigation still faces many challenges, such as occlusion of global navigation satellite system (GNSS) signals, frequent updates of Wi-Fi/ bluetooth low energy (BLE)/geomagnetic fingerprint databases, and smoothly switching in the transitional area of indoor and outdoor. In addition, the positioning sensors of popular mobile smart terminals are limited by cost and power consumption, and the observation data is generally noisy and poor in stability.
      Methods  Therefore, this paper proposes a pedestrian indoor and outdoor seamless positioning technology based on cloud-end collaboration of smartphone, which breaks through the crowd sourced collection and rapid update of the beacon fingerprint database, the precise positioning of the smart phone multi-sensor information fusion, and the indoor and outdoor seamless switching. We have developed a smartphone positioning application for pedestrians. The collaborative precision positioning enhancement information is provided by the location service platform and the multi-source observations data (GNSS, miniature inertial measurement unit (MIMU), Wi-Fi, BLE, magnetometer, barometer) are obtained by the smartphone.
      Results  The feild test results show that the outdoor positioning accuracy of ordinary users is better than 1.5 m, and indoor accuracy is about 1‒3 m.
      Conclusions  It supports thedemand of mass-market users for seamless and precise positioning indoors and outdoors.
  • [1]
    Verhagen S, Odijk D, Teunissen P J G, et al. Performance Improvement with Low-cost Multi-GNSS Receivers[C]//The 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, Netherlands, 2010
    [2]
    Humphreys T E, Murrian M, van Diggelen F, et al. On the Feasibility of cm-Accurate Positioning via a Smartphone's Antenna and GNSS Chip[C]// IEEE/ION Position, Location and Navigation Symposium(PLANS), Savannah, GA, USA, 2016
    [3]
    陈锐志, 陈亮. 基于智能手机的室内定位技术的发展现状和挑战[J]. 测绘学报, 2017, 46(10): 1316-1326 doi: 10.11947/j.AGCS.2017.20170383

    Chen Ruizhi, Chen Liang. Indoor Positioning with Smartphones: The State-of-the-Art and the Challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1316-1326 doi: 10.11947/j.AGCS.2017.20170383
    [4]
    姜卫平, 郭迟, 左文炜. 我国导航与位置服务的进展及思考[J]. 测绘通报, 2020(1): 1-4 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202001001.htm

    Jiang Weiping, Guo Chi, Zuo Wenwei. Progress and Thought of Navigation and Location Services in China[J]. Bulletin of Surveying and Mapping, 2020 (1): 1-4 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202001001.htm
    [5]
    涂伟, 曹劲舟, 高琦丽, 等. 融合多源时空大数据感知城市动态[J]. 武汉大学学报·信息科学版, 2020, 45(12): 1875-1883 doi: 10.13203/j.whugis20200535

    Tu Wei, Cao Jinzhou, Gao Qili, et al. Sensing Urban Dynamics by Fusing M ulti-sourced Spatiotemporal Big D ata[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1875-1883 doi: 10.13203/j.whugis20200535
    [6]
    曲向芳. 北斗卫星导航定位系统全球组网产业链迎来新发展机遇: 《2018中国卫星导航与位置服务产业发展白皮书》发布[J]. 卫星应用, 2018(8): 65-71

    Qu Xiangfang. The BeiDou Satellite Navigation and Positioning System Global Networking Industry Chain Ushers in New Development Opportunities— "2018 China Satellite Navigation and Location Service Industry Development White Paper"is Released [J]. Satellite Application, 2018(8): 65-71
    [7]
    郭旦怀, 张鸣珂, 贾楠, 等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报·信息科学版, 2020, 45(12): 1890-1902 doi: 10.13203/j.whugis20200334

    Guo Danhuai, Zhang Mingke, Jia Nan, et al. Survey of Point-of-Interest Recommendation Research Fused with Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45 (12): 1890-1902 doi: 10.13203/j.whugis20200334
    [8]
    European GNSS Agency (GSA). GNSS Market Report[EB/OL]. https://galileognss.eu/wp-content/uploads/2020/08/market_report_issue_6_v2-2019.pdf, 2019
    [9]
    Pesyna K M J, Heath R W J, Humphreys T E. Centimeter Positioning with a Smartphone-Quality GNSS Antenna[C]//The ION GNSS 2014, Tampa, USA, 2014
    [10]
    Hsu L T, Gu Y, Kamijo S. NLOS Correction/Exclusion for GNSS Measurement Using RAIM and City Building Models[J]. Sensors, 2015, 15(7): 17329-17349 doi: 10.3390/s150717329
    [11]
    来奇峰, 袁洪, 魏东岩, 等. 基于场景检测的城市环境GNSS/INS组合定位方法研究[J]. 导航定位与授时, 2021, 8(1): 151-162

    Lai Qifeng, Yuan Hong, Wei Dongyan, et al. Research on GNSS/INS Integrated Positioning Method for Urban Environment Based on Context Aware [J]. Navigation Positioning and Timing, 2021, 8 (1): 151-162
    [12]
    Correa A, Barcelo M, Morell A, et al. A Review of Pedestrian Indoor Positioning Systems for Mass Market Applications[J]. Sensors, 2017, 17(8): 1927 doi: 10.3390/s17081927
    [13]
    El-Sheimy N, Li Y. Indoor Navigation: State of the Art and Future Trends[J]. Satellite Navigation, 2021, 2(1): 1-23 doi: 10.1186/s43020-020-00033-9
    [14]
    Zhuang Y, Lan H Y, Li Y, et al. PDR/INS/WiFi Integration Based on Handheld Devices for Indoor Pedestrian Navigation[J]. Micromachines, 2015, 6 (6): 793-812 doi: 10.3390/mi6060793
    [15]
    邓中亮, 罗牧星, 莫君, 等. 基于TDD模式下的开环跟踪方法研究[C]. 第十届中国卫星导航学术年会, 北京, 2019

    Deng Zhongliang, Luo Muxing, Mo Jun, et al. Research on Open-loop Tracking Method Based on TDD[C]// The 10th China Satellite Navigation Conference(CSNC), Beijing, China, 2019
    [16]
    魏东岩, 袁洪, 徐颖. 基于GNSS与蜂窝移动通信系统的协同指纹定位[C]. 第三届中国卫星导航学术年会, 广州, 2012

    Wei Dongyan, Yuan Hong, Xu Ying. Cooperative Position Using Fingerprint in GNSS and Cellular Mobile Communication Systems[C]// The 3rd China Satellite Navigation Conference (CSNC), Guangzhou, China, 2012
    [17]
    Harle R. A Survey of Indoor Inertial Positioning Systems for Pedestrians[J]. IEEE Communications Surveys & Tutorials, 2013, 15(3): 1281-1293 http://pdfs.semanticscholar.org/f873/082d86155bfaf4552e5b93aff18f5158cf9d.pdf
    [18]
    Realini E, Caldera S, Pertusini L, et al. Precise GNSS Positioning Using Smart Devices[J]. Sensors, 2017, 17(10): 2434 doi: 10.3390/s17102434
    [19]
    Zhu F, Tao X L, Liu W K, et al. Walker: Continuous and Precise Navigation by Fusing GNSS and MEMS in Smartphone Chipsets for Pedestrians[J]. Remote Sensing, 2019, 11(2): 139 doi: 10.3390/rs11020139
    [20]
    Ahmad Fuad M R, Drieberg M. Remote Vehicle Tracking System Using GSM Modem and Google Map[C]//2013 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (CSUDET), Selangor, Malaysia, 2013
    [21]
    Soliman S, Agashe P, Fernandez I, et al. GPSOne/Sup TM/: A Hybrid Position Location System[C]// IEEE Sixth International Symposium on Spread Spectrum Techniques and Applications, Parsippany, NJ, USA, 2000
    [22]
    黄永帅, 史俊波, 欧阳晨皓, 等. 千寻北斗地基增强网络下的实时观测数据解码及定位性能分析[J]. 测绘通报, 2017(9): 11-14

    Huang Yongshuai, Shi Junbo, Ouyang Chenhao, et al. Real-Time Observation Decoding and Positioning Analysis Based on Qianxun BeiDou Ground Based Augmentation System[J]. Bulletin of Surveying and Mapping, 2017(9): 11-14
    [23]
    杨元喜, 李晓燕. 微PNT与综合PNT[J]. 测绘学报, 2017, 46(10): 1249-1254 doi: 10.11947/j.AGCS.2017.20170249

    Yang Yuanxi, Li Xiaoyan. Micro-PNT and Comprehensive PNT[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1249-1254 doi: 10.11947/j.AGCS.2017.20170249
    [24]
    杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7): 893-898

    Yang Yuanxi. Resilient PNT Concept Frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47 (7): 893-898
    [25]
    方志祥, 姜宇昕, 管昉立. 融合可视与不可视地标的行人相对定位方法[J]. 武汉大学学报· 信息科学版, 2021, 46(5): 601-609 doi: 10.13203/j.whugis20190411

    Fang Zhixiang, Jiang Yuxin, Guan Fangli. Pedestrian Relative Positioning Method Based on Visible and Invisible Landmarks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 601-609 doi: 10.13203/j.whugis20190411
  • Related Articles

    [1]CAI Xianhua, LIU Kaili, HU Zhuoliang, ZHANG Yuan. An Algorithm for Constructing Road Network Using Block Polygon Topology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1170-1177. DOI: 10.13203/j.whugis20190348
    [2]YANG Wei, AI Tinghua. Extracting Arterial Road Polygon from OpenStreetMap Data Based on Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1725-1731. DOI: 10.13203/j.whugis20160294
    [3]ZHANG Hao, WU Fang, GONG Xianyong, XU Junkui, ZHANG Juntao. A Parallel Factor-Based Method of Arterial Two-Lane Roads Recognition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1123-1130. DOI: 10.13203/j.whugis20150122
    [4]WANG Xiao, QIAN Haizhong, LIU Hailong, HE Haiwei, CHEN Jingnan. A Hierarchical and Iterative Road Network Matching Method by Using Road Classification[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1072-1078. DOI: 10.13203/j.whugis20140441
    [5]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [6]LI Fei, LUAN Xuechen, YANG Bisheng, LI Qiuping. Automatic Topology Maintenance Approach for High-level Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 729-733. DOI: 10.13203/j.whugis20140115
    [7]LUAN Xuechen, YANG Bisheng, ZHANG Yunfei. Structural Hierarchy Analysis of Streets Based on Complex Network Theory[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 728-732.
    [8]LI Qingquan, ZENG Zhe, YANG Bisheng, LIBijun. Betweenness Centrality Analysis for Urban Road Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 37-41.
    [9]ZHU Qing, LI Yuan. Review of Road Network Models[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 471-476.
    [10]DENG Hongyan, WU Fang, ZHAI Renjian. A Generalization Model of Road Networks Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 164-167.
  • Cited by

    Periodical cited type(5)

    1. 庞琪沛,吴云龙,徐景田,史绪国,张毅. 甘肃积石山Ms 6.2地震深部构造特征和动力学过程. 武汉大学学报(信息科学版). 2025(02): 356-367 .
    2. 段国勇,马如梦. 三峡库区灰岩浸泡损伤-孔隙水压耦合模型研究. 水利水电技术(中英文). 2024(09): 178-186 .
    3. 胡锦涛,谢军,危自根,金超. 三峡库区秭归段浅层速度结构和孕震环境. 地震学报. 2023(02): 223-233 .
    4. 李路顺,汪泽成,肖安成,胡安平,陈友智,王芊芊. 扬子板块北缘新元古代盆地结构与马槽园群归属研究. 地学前缘. 2022(06): 291-304 .
    5. 韩飞,苏艳华,王泽. 三峡地区流动重力差分变化及其特征分析. 测绘科学. 2021(04): 1-5+19 .

    Other cited types(1)

Catalog

    Article views (1280) PDF downloads (199) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return