ZHOU Sha, NIU Jiqiang, XU Feng, PAN Xiaofang, ZHEN Wenjie, QIAN Haoyue. Estimating Gaze Directions for Pedestrian Navigation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 700-705,735. DOI: 10.13203/j.whugis20200465
Citation: ZHOU Sha, NIU Jiqiang, XU Feng, PAN Xiaofang, ZHEN Wenjie, QIAN Haoyue. Estimating Gaze Directions for Pedestrian Navigation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 700-705,735. DOI: 10.13203/j.whugis20200465

Estimating Gaze Directions for Pedestrian Navigation

Funds: 

The National Natural Science Foundation of China 41771438

The National Natural Science Foundation of China 41671405

The National Natural Science Foundation of China 41701449

The National Natural Science Foundation of China 41701446

The National Natural Science Foundation of China 41971356

the Science and Technology Planning Project of Henan Province 212102310027

the Key Scientific Research Projects for Higher Education of Henan Province 19A170012

the Natural Science Foundation of Henan Province 202300410345

the Postgraduate Education Reform and Quality Improvement Project of Henan Province HNYJS2020JD14

the Nanhu Scholars Program for Young Scholars of Xinyang Normal University 

More Information
  • Author Bio:

    ZHOU Sha, PhD, lecturer, specializes in pedestrian navigation and place descriptions.E-mail: zhousha@xynu.edu.cn

  • Corresponding author:

    NIU Jiqiang, PhD, professor. E-mail: niujiqiang@xynu.edu.cn

  • Received Date: August 31, 2020
  • Published Date: May 04, 2021
  •   Objectives  Accurately capturing gaze directions of pedestrians can effectively improve the efficiency and the safety of pedestrian navigation. Traditional methods of gaze direction estimation are somewhat invasive in many practical applications and unadapted to different users and head pose variations, and unsuitable for pedestrian navigation in terms of the portability of the corresponding devices. Accordingly, we propose a model to estimate the gaze directions of pedestrians using smart glasses.
      Methods  Based on scale invariant feature transform features, we first measure the similarity degree between gaze photos and street view images. Then we propose a method to estimate gaze directions while pedestrians and street view images are disjoint.When pedestrians and street view images are overlapped, we develop another estimation method that considers the position error of pedestrians. Furthermore, we establish a gaze-direction estimation model that considers the positional relationship between pedestrians and street view images. Finally, we select two real-world scenes to verify the reliability of the proposed estimation model of gaze directions by simulation experiments.Results: The results show that: (1) The estimation errors of the gaze directions by simulation experiments.
      Results  The results show that: (1) The estimation errors of the proposed estimation model(i.e., gaze-direction estimation model considering positional relationship) are significantly lower than that of gaze-directions estimation model ignoring positional relationship. (2) In the same scenes, the estimated error does not increase with the test distances. Moreover, the average estimation accuracy of our model is almost similar to the estimation method based on depth cameras.
      Conclusions  (1) The proposed gaze direction estimation is significantly superior to the model that ignores positional relationship.(2) Pedestrian position variations have little impact on the estimation accuracies of our model in the same scene. Hence, the proposed model is suitable for pedestrian navigation and we can use portable smart glasses to estimate gaze directions.
  • [1]
    方志祥, 徐虹, 萧世伦, 等. 绝对空间定位到相对空间感知的行人导航研究趋势[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2 173-2 182 doi: 10.13203/j.whugis20180170

    Fang Zhixiang, Xu Hong, Shaw Shihlung, et al. Pedestrian Navigation Research Trend: From Absolute Space to Relative Space-Based Approach[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 173-2 182 doi: 10.13203/j.whugis20180170
    [2]
    赵文晔, 高井祥, 李增科, 等. 地图匹配辅助的KF-PF室内定位算法模型[J]. 武汉大学学报·信息科学版, 2018, 43(5): 806-812 doi: 10.13203/j.whugis20150707

    Zhao Wenye, Gao Jingxiang, Li Zengke, et al. An Indoor Positioning System Based on Map-Aided KF-PF Module[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 806-812 doi: 10.13203/j.whugis20150707
    [3]
    Fang Zhixiang, Li Qingquan, Zhang Xing, et al. A GIS Data Model for Landmark-based Pedestrian Navigation[J]. International Journal of Geographical Information Science, 2012, 26(5): 817-838 doi: 10.1080/13658816.2011.615749
    [4]
    Fang Zhixiang, Li Ling, Li Bijun, et al. An Artificial Bee Colony-Based Multi-objective Route Planning Algorithm for Use in Pedestrian Navigation at Night[J]. International Journal of Geographical Information Science, 2017, 31(10): 2 020-2 044 doi: 10.1080/13658816.2017.1346795
    [5]
    Fang Zhixiang, Li Qingquan, Zhang Xing. A Multiobjective Model for Generating Optimal Landmark Sequences in Pedestrian Navigation Applications[J]. International Journal of Geographical Information Science, 2011, 25(5): 785-805 doi: 10.1080/13658816.2010.500290
    [6]
    张星, 李清泉, 方志祥, 等. 顾及地标与道路分支的行人导航路径选择算法[J]. 武汉大学学报·信息科学版, 2013, 38(10): 1 239-1 242 http://ch.whu.edu.cn/article/id/2764

    Zhang Xing, Li Qingquan, Fang Zhixiang, et al. Landmark and Branch-Based Pedestrian Route Complexity and Selection Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1 239-1 242 http://ch.whu.edu.cn/article/id/2764
    [7]
    张星, 李清泉, 方志祥. 面向行人导航的地标链生成方法[J]. 武汉大学学报·信息科学版, 2010, 35(10): 1 240-1 244 http://ch.whu.edu.cn/article/id/1091

    Zhang Xing, Li Qingquan, Fang Zhixiang. An Approach of Generating Landmark Chain for Pedestrian Navigation Applications[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1 240-1 244 http://ch.whu.edu.cn/article/id/1091
    [8]
    Zhou Sha, Wang Run, Ding Junhua, et al. An Approach for Computing Routes Without Complicated Decision Points in Landmark-Based Pedestrian Navigation[J]. International Journal of Geographical Information Science, 2019, 33(9): 1 829-1 846 doi: 10.1080/13658816.2019.1603387
    [9]
    Liao Hua, Dong Weihua, Huang Haosheng, et al. Inferring User Tasks in Pedestrian Navigation from Eye Movement Data in Real-World Environments[J]. International Journal of Geographical Information Science, 2019, 33(4): 739-763 doi: 10.1080/13658816.2018.1482554
    [10]
    Gkonos C, Giannopoulos I, Raubal M. Maps, Vibration or Gaze? Comparison of Novel Navigation Assistance in Indoor and Outdoor Environments[J]. Journal of Location Based Services, 2017, 11(1): 29-49 doi: 10.1080/17489725.2017.1323125
    [11]
    Giannopoulos I, Kiefer P, Raubal M. GazeNav: Gaze-Based Pedestrian Navigation[C]//The 17th International Conference on Human-Computer Interaction with Mobile Devices and Services, Copenhagen, Denmark, 2015
    [12]
    Anagnostopoulos V, Havlena M, Kiefer P, et al. Gaze-Informed Location-Based Services[J]. International Journal of Geographical Information Science, 2017, 31(9): 1770-1797 doi: 10.1080/13658816.2017.1334896
    [13]
    周沙. 基于地标的行人导航关键技术研究[D]. 武汉: 中国地质大学, 2017

    Zhou Sha. Research on the Key Technologies of Landmark-Based Pedestrian Navigation[D]. Wuhan: China University of Geosciences, 2017
    [14]
    Guestrin E D, Eizenman M. General Theory of Remote Gaze Estimation Using the Pupil Center and Corneal Reflections[J]. IEEE Transactions on biomedical engineering, 2006, 53(6): 1 124-1 133 doi: 10.1109/TBME.2005.863952
    [15]
    Valenti R, Gevers T. Accurate Eye Center Location Through Invariant Isocentric Patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 34(9): 1 785-1 798 http://europepmc.org/abstract/med/22813958
    [16]
    Fanelli G, Weise T, Gall J, et al. Real Time Head Pose Estimation from Consumer Depth Cameras[C]//Joint Pattern Recognition Symposium, Berlin, Germany, 2011
    [17]
    Funes-Mora K A, Odobez J. Gaze Estimation in the 3D Space Using RGB-D Sensors[J]. International Journal of Computer Vision, 2016, 118(2): 194-216 doi: 10.1007/s11263-015-0863-4
    [18]
    Lowe D G. Object Recognition from Local Scale-Invariant Features[C]//The 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999
    [19]
    Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110 doi: 10.1023/B:VISI.0000029664.99615.94
    [20]
    徐丰, 牛继强, 李卓凡. 基于粗集的多粒度空间方向关系不确定性定量评价模型[J]. 武汉大学学报·信息科学版, 2015, 40(7): 971-976 doi: 10.13203/j.whugis20130126

    Xu Feng, Niu Jiqiang, Li Zhuofan. Quantitative Evaluation Model of the Uncertainty of Multi-granularity Space Direction Relations Based on Rough-Set[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 971-976 doi: 10.13203/j.whugis20130126
    [21]
    蔡剑红, 李德仁. 多尺度下的不确定性空间方向锥形模型研究[J]. 武汉大学学报·信息科学版, 2007, 32(8): 735-739 http://ch.whu.edu.cn/article/id/1966

    Cai Jianhong, Li Deren. Research on Cone-shaped Models of Cardinal Direction Relations Considering Positional Uncertainty of Multiple Spatial-scale Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(8): 735-739 http://ch.whu.edu.cn/article/id/1966
  • Related Articles

    [1]LIU Lin, MA Zepeng, SUN Yi, LI Wanwu, XIANG Zicheng. Semantic Segmentation of Street View and Multi-dimensional Feature Identification of City Based on MS-DeepLabV3+[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 343-354. DOI: 10.13203/j.whugis20220773
    [2]WU Jie, CHENG Liang, CHU Sensen, RUAN Xiaoguang. Sky View Index-Urban Transportation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 706-717. DOI: 10.13203/j.whugis20200447
    [3]XU Hong, WANG Lubin, FANG Zhixiang, HE Minghui, HOU Xuecheng, ZUO Liang, GUAN Fangli, XIONG Ce, GONG Yiyu, PANG Qinglin, ZHANG Han, SUN Shuteng, NADIRE Aimaier. Street-Facing Architectural Image Mapping and Architectural Style Map Generation Method Using Street View Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 659-671. DOI: 10.13203/j.whugis20200445
    [4]CHEN Shanxue, ZHENG Wenjing, ZHANG Jiajia, LI Fangwei. Fast Compression Algorithm for Hyperspectral Image Based on Dispersion Sorting in Transform Domain[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 868-874. DOI: 10.13203/j.whugis20140270
    [5]ZHENG Zhaobao, ZHENG Hong. Fuzzy Image Classification with a Certain Degree[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 482-486. DOI: 10.13203/j.whugis20150712
    [6]ZHENG Zhaobao, PAN Li, ZHENG Hong. Application of Image Correlation Degree to Image Fuzzy Classification[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 574-577. DOI: 10.13203/j.whugis20140736
    [7]Ma Xudong, Yan Li, Cao Wei, Li Wuqi, Wang Yu. A New Image Quality Assessment Model Based onthe Gradient Information[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1412-1418.
    [8]he peipei,  wan youchuan,  gao xianjun,  qin jiaxin. street  view images matching al gorithm based on colorscale-invariant  feature transform[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 867-872.
    [9]ZHENG Zhaobao, PAN Li, ZHENG Hong. Image Segmentation Based on Fuzzy Logic Methods[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 397-400. DOI: 10.13203/j.whugis20120209
    [10]MA Hongchao, LI Deren. A New Approach for Image Similarity Definition and Its Application to Image Retrieval[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 405-411.
  • Cited by

    Periodical cited type(12)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    3. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    4. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    5. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    6. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    7. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    8. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    9. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    10. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    11. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    12. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views (1049) PDF downloads (50) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return