LI Haodong, ZHAO Qile, TAO Jun, LONG Yuhao. FCB Estimation and Ambiguity Resolution of BDS-3[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1439-1446. DOI: 10.13203/j.whugis20200168
Citation: LI Haodong, ZHAO Qile, TAO Jun, LONG Yuhao. FCB Estimation and Ambiguity Resolution of BDS-3[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1439-1446. DOI: 10.13203/j.whugis20200168

FCB Estimation and Ambiguity Resolution of BDS-3

Funds: 

The National Key Research and Development Program of China 2017YFB0503400

the National Natural Science Foundation of China 41774035

the National Natural Science Foundation of China 41674004

More Information
  • Author Bio:

    LI Haodong, master, mainly engaged in precise GNSS positioning technology. E-mail: haodongli@whu.edu.cn

  • Corresponding author:

    TAO Jun, PhD candidate. E-mail: jtaowhu@whu.edu.cn

  • Received Date: December 12, 2021
  • Available Online: February 18, 2022
  • Published Date: September 04, 2022
  •   Objectives  Precise point positioning (PPP) combines the advantages of standard point position‍ing (SPP) and relative positioning, which can achieve centimeter level positioning. With the development of BeiDou satellite navigation system (BDS), more and more BDS satellites begin to provide global positioning, navigation and timing services, which also promotes the development of multi-frequency and multi-system PPP. For a long time, because of the atmospheric delay and hardware delay of satellite and receiver, the ambiguity of PPP is not an integer. PPP needs a long time to converge, which greatly lim‍its its application.The ambiguity can be restored to integer and the convergence time can be shortened with the help of fractional cycle bias (FCB).
      Methods  In order to improve the effect of precise point positioning-ambiguity resolution (PPP-AR) of BDS as a whole, we estimate the FCBs of GPS and BDS based on the observation data from August 1 to August 31 in 2020 of globally distributed stations. The single difference between satellites is used to eliminate the influence of hardware delay at the receivers, and the single differ‍ence ambiguity vector is solved by the whole network adjustment to obtain the FCB estimation of each satellite.
      Results  The results of the time series of BDS-3 wide lane (WL) and narrow lane (NL) FCBs show that the WL FCBs has long-term stability, the change of BDS-3 WL FCBs in 31 days is less than 0.2 weeks, and the change of GPS WL FCBs is less than 0.1 weeks. The FCBs of BDS-3 NL can keep stable for a period of time, and the change is less than 0.1 weeks. The percentages of GPS WL and NL FCBs residuals within 0.15 weeks are 99.8% and 99.3% respectively, and the percentages of BDS-3 are 99.7% and 98.1% respectively. In order to reflect the improvement effect of FCBs on PPP, static and dynamic PPP-AR tests were carried out at 8 stations around the world. The results show that under the static condition, the average fixed time and convergence time of BDS-3 are 31.5 min and 24.9 min respectively, which is 24.8% shorter than the float PPP. The errors in E, N and U directions are 1.03 cm, 0.60 cm and 1.72 ‍cm respectively, and the fixed rate is 89.8%. Under the dynamic condition, the average fixed time and convergence time of BDS-3 are 33.3 min and 50.7 min respectively, which is 17.4% shorter than the float PPP. The errors in E, N and U directions are 2.57 cm, 2.29 cm and 3.71 cm respectively, and the fixed rate is 83.9%.
      Conclusions  PPP-AR can shorten the convergence time of PPP to a certain extent, but the improvement of positioning accuracy is not obvious after complete convergence. BDS-3 FCBs stability is lim‍it‍ed by precision products and observation data, and its PPP-AR is slightly worse than GPS.
  • [1]
    Zumberge J F, Heflin M B, Jefferson D C, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5005-5017 doi: 10.1029/96JB03860
    [2]
    Geng J H, Shi C, Ge M R, et al. Improving the Estimation of Fractional-Cycle Biases for Ambiguity Resolution in Precise Point Positioning[J]. Journal of Geodesy, 2012, 86(8): 579-589 doi: 10.1007/s00190-011-0537-0
    [3]
    张辉, 郝金明, 刘伟平, 等. 估计接收机差分码偏差的GPS/BDS非组合精密单点定位模型[J]. 武汉大学学报·信息科学版, 2019, 44(4): 495-500 doi: 10.13203/j.whugis20170119

    Zhang Hui, Hao Jinming, Liu Weiping, et al. GPS/ BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500 doi: 10.13203/j.whugis20170119
    [4]
    Montenbruck O, Steigenberger P, Prange L, et al. The Multi-GNSS Experiment(MGEX)of the International GNSS Service(IGS): Achievements, Prospects and Challenges[J]. Advances in Space Research, 2017, 59(7): 1671-1697 doi: 10.1016/j.asr.2017.01.011
    [5]
    赵昂, 杨元喜, 许扬胤, 等. GNSS单系统及多系统组合完好性分析[J]. 武汉大学学报·信息科学版, 2020, 45(1): 72-80 doi: 10.13203/j.whugis20180425

    Zhao Ang, Yang Yuanxi, Xu Yangyin, et al. Integrity Analysis of GNSS Single System and Multi-System Combination[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 72-80 doi: 10.13203/j.whugis20180425
    [6]
    Shi C, Zhao Q L, Hu Z G, et al. Precise Relative Positioning Using Real Tracking Data from COM PASS GEO and IGSO Satellites[J]. GPS Solutions, 2013, 17(1): 103-119 doi: 10.1007/s10291-012-0264-x
    [7]
    何义磊. 北斗三号最简系统卫星信号质量分析[J]. 武汉大学学报·信息科学版, 2020, 45 (3): 394-402 doi: 10.13203/j.whugis20180379

    He Yilei. Quality Analysis of Satellite Signal for BDS-3 Simplest System[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 394-402 doi: 10.13203/j.whugis20180379
    [8]
    Li X X, Zhang X H. Improving the Estimation of Uncalibrated Fractional Phase Offsets for PPP Ambiguity Resolution[J]. Journal of Navigation, 2012, 65(3): 513-529 doi: 10.1017/S0373463312000112
    [9]
    Li P, Zhang X H, Guo F. Ambiguity Resolved Precise Point Positioning with GPS and BeiDou[J]. Journal of Geodesy, 2017, 91(1): 25-40 doi: 10.1007/s00190-016-0935-4
    [10]
    Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning(PPP)with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399 doi: 10.1007/s00190-007-0187-4
    [11]
    Laurichesse D, Mercier F, Berthias J P, et al. Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination[J]. Navigation, 2009, 56(2): 135-149 doi: 10.1002/j.2161-4296.2009.tb01750.x
    [12]
    Collins P, Bisnath S, Lahaye F, et al. Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing [J]. Navigation, 2010, 57(2): 123-135 doi: 10.1002/j.2161-4296.2010.tb01772.x
    [13]
    Geng J H, Meng X L, Dodson A H, et al. Integer Ambiguity Resolution in Precise Point Positioning: Method Comparison[J]. Journal of Geodesy, 2010, 84(9): 569-581 doi: 10.1007/s00190-010-0399-x
    [14]
    Shi J B, Gao Y. A Comparison of Three PPP Integer Ambiguity Resolution Methods[J]. GPS Solutions, 2014, 18(4): 519-528 doi: 10.1007/s10291-013-0348-2
    [15]
    Zhang X H, Wu M K, Liu W K, et al. Initial Assessment of the COMPASS/BeiDou-3: New-Generation Navigation Signals[J]. Journal of Geodesy, 2017, 91(10): 1225-1240 doi: 10.1007/s00190-017-1020-3
    [16]
    Wanninger L, Beer S. BeiDou Satellite-Induced Code Pseudorange Variations: Diagnosis and Therapy[J]. GPS Solutions, 2015, 19(4): 639-648 doi: 10.1007/s10291-014-0423-3
    [17]
    楼益栋, 龚晓鹏, 辜声峰, 等. 北斗卫星伪距码偏差特性及其影响分析[J]. 武汉大学学报·信息科学版, 2017, 42(8): 1040-1046 doi: 10.13203/j.whugis20150107

    Lou Yidong, Gong Xiaopeng, Gu Shengfeng, et al. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040 1046 doi: 10.13203/j.whugis20150107
    [18]
    Li X X, Li X, Yuan Y Q, et al. Multi-GNSS Phase Delay Estimation and PPP Ambiguity Resolution: GPS, BDS, GLONASS, Galileo[J]. Journal of Geodesy, 2018, 92(6): 579-608 doi: 10.1007/s00190-017-1081-3
    [19]
    Liu Y Y, Ye S R, Song W W, et al. Estimating the Orbit Error of BeiDou GEO Satellites to Improve the Performance of Multi-GNSS PPP Ambiguity Resolution[J]. GPS Solutions, 2018, 22(3), DOI:org/ 10.1007/s10291-018-0751-9
    [20]
    Qu L Z, Du M Y, Wang J, et al. Precise Point Positioning Ambiguity Resolution by Integrating BDS 3e into BDS-2 and GPS[J]. GPS Solutions, 2019, 23(3), DOI: org/ 10.1007/s10291-019-0854-y
    [21]
    Jiang W P, Zhao W, Chen H, et al. Analysis of BDS Fractional Cycle Biases and PPP Ambiguity Resolution[J]. Sensors (Basel, Switzerland), 2019, 19(21), DOI: org/org/ 10.3390/s19214725
    [22]
    Hu J H, Zhang X H, Li P, et al. Multi-GNSS Fractional Cycle Bias Products Generation for GNSS Ambiguity-Fixed PPP at Wuhan University[J]. GPS Solutions, 2019, 24(1), DOI: org/ 10.1007/s10291-019-0929-9
  • Related Articles

    [1]XU Guozhen, REN Xiaodong, ZHANG Xiaohong. Quality Analysis Of Multi-GNSS OSB Products from CNES and Its Performance Evaluation of Real-Time Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230376
    [2]KUANG Kaifa, YANG Yuchen, WEN Fangying, CHEN Zheng, HAN Houzeng, WANG Jian. BDS-3 Real-Time Filtered Precise Orbit Determination with Undifferenced Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1223-1231. DOI: 10.13203/j.whugis20230055
    [3]MI Xiaolong, YUAN Yunbin, ZHANG Baocheng. RTK Positioning Performance Analysis for Combined BDS-3 and Galileo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 113-118. DOI: 10.13203/j.whugis20200483
    [4]AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091
    [5]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [6]LIU Shuai, SUN Fuping, LI Haifeng, LIU Jing, HAO Wanliang. GLONASS Aided Ambiguity Fixing for Kinematic GPS PPP[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9): 1238-1244. DOI: 10.13203/j.whugis20140494
    [7]CHEN Xijiang, HUA Xianghong, QIU Weining, JIANG Jianjun. Accuracy Evaluation of Point Cloud Angular Resolution[J]. Geomatics and Information Science of Wuhan University, 2013, 38(11): 1281-1285.
    [8]ZHANG Xiaohong, LI Pan, ZUO Xiang. Kinematic Precise Orbit Determination Based on Ambiguity-Fixed PPP[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1009-1013.
    [9]NIE Jianliang, HE Zhengbin. Dynamic Precise Point Positioning Algorithm Based on Fixing Ambiguities[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1029-1033.
    [10]ZHANG Xiaohong, LI Xingxing. A New Method for Zero-Differenced Interger Ambiguity Resolution and Its Application to PPP[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 657-660.
  • Cited by

    Periodical cited type(7)

    1. 金彪,陈姗姗,李敏,李子潇,原晋栩. 星载GPS/Galileo数据Sentinel-6A卫星运动学精密定轨研究. 武汉大学学报(信息科学版). 2025(01): 42-52 .
    2. 刘学习,姜卫平,郑南山,张克非. GPS/Galileo FCB估计方法与数值分析. 导航定位学报. 2024(01): 1-11 .
    3. 章繁,柴洪洲,王敏,肖国锐,张乾坤,杜祯强. 组合GPS/GLONASS三频观测值的非差非组合PPP模糊度快速固定. 武汉大学学报(信息科学版). 2024(10): 1900-1910 .
    4. 林高宇,王磊,何飞扬,宋晓迪,郭际明. Swarm低轨卫星星座的GPS接收机差分码偏差估计. 武汉大学学报(信息科学版). 2023(01): 119-126 .
    5. 吴飞扬,李昕. 基于不同PPP模型的北斗三号相位小数偏差估计与新特性分析. 全球定位系统. 2023(01): 14-23 .
    6. 李笑娜,陈亮,展昕,张志新. 一种顾及先验约束的窄巷FCB估计方法. 测绘通报. 2023(08): 172-177 .
    7. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .

    Other cited types(6)

Catalog

    Article views (1586) PDF downloads (193) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return