MI Xiaolong, YUAN Yunbin, ZHANG Baocheng. RTK Positioning Performance Analysis for Combined BDS-3 and Galileo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 113-118. DOI: 10.13203/j.whugis20200483
Citation: MI Xiaolong, YUAN Yunbin, ZHANG Baocheng. RTK Positioning Performance Analysis for Combined BDS-3 and Galileo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 113-118. DOI: 10.13203/j.whugis20200483

RTK Positioning Performance Analysis for Combined BDS-3 and Galileo

More Information
  • Received Date: September 27, 2022
  • Available Online: February 07, 2023
  • Published Date: January 04, 2023
  •   Objectives  BeiDou-3 navigation satellite system (BDS-3) has been fully completed and provides reliable positioning, navigation, and timing services to global users. In order to achieve compatibility and interoperability with other global navigation satellite systems (GNSS), B1C and B2a signals have been modulated by BDS-3 based on BDS-2, which enable frequency multiplexing with E1 and E5a signals of Galileo. The inter-system biases (ISBs) are important for the fusion processing of different GNSS.
      Methods  This paper proposes an ISB estimation and application model based on the single-differenced observations and analyzes the ISBs between the overlapping frequencies of BDS-3 and Galileo. Based on several receivers of the new trackable BDS-3 signals, the characteristics of ISBs between BDS-3 and Galileo are revealed, and the real-time kinematic (RTK) positioning performance of BDS-3 and Galileo is analyzed.
      Results  The results show that the ISBs of B1C-E1 and B2a-E5a exist in different types of receivers but not in the same type of receivers. In addition, compared with BDS-3-only and Galileo-only, the combination of BDS-3 and Galileo has an improvement of more than 10% in both the success rate of ambiguity resolution and positioning accuracy.
      Conclusions  The multi-constellation RTK positioning performance with the introduction of ISBs is more advantageous than that of a single constellation.
  • [1]
    杨元喜, 许扬胤, 李金龙, 等. 北斗三号系统进展及性能预测: 试验验证数据分析[J]. 中国科学: 地球科学, 2018, 48(5): 584-594. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201805005.htm

    Yang Yuanxi, Xu Yangyin, Li Jinlong, et al. Progress and Performance Evaluation of BeiDou Global Navigation Satellite System: Data Analysis Based on BDS-3 Demonstration System[J]. Scientia Sinica (Terrae), 2018, 48(5): 584-594. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201805005.htm
    [2]
    何义磊. 北斗三号最简系统卫星信号质量分析[J]. 武汉大学学报(信息科学版), 2020, 45(3): 394-402. doi: 10.13203/j.whugis20180379

    He Yilei. Quality Analysis of Satellite Signal for BDS-3 Simplest System[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 394-402. doi: 10.13203/j.whugis20180379
    [3]
    Mi X L, Zhang B C, Yuan Y B, et al. Characteristics of GPS, BDS2, BDS3 and Galileo Inter-System Biases and Their Influence on RTK Positioning[J]. Measurement Science and Technology, 2020, 31(1): 015009. doi: 10.1088/1361-6501/ab4209
    [4]
    Gioia C, Borio D. A Statistical Characterization of the Galileo-to-GPS Inter-System Bias[J]. Journal of Geodesy, 2016, 90(11): 1279-1291. doi: 10.1007/s00190-016-0925-6
    [5]
    罗翠翠, 王光盈, 叶长斌, 等. QZSS与GPS重叠频率紧组合相对定位精度分析[J]. 测绘地理信息, 2022, 47(4): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202204003.htm

    Luo Cuicui, Wang Guangying, Ye Changbin, et al. Analysis of Relative Positioning Accuracy of QZSS and GPS Overlapping Frequency Tight Combination[J]. Journal of Geomatics, 2022, 47(4): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202204003.htm
    [6]
    Wu Mingkui, Liu Wanke, Wang Wang, et al. Differential Inter-System Biases Estimation and Initial Assessment of Instantaneous Tightly Combined RTK with BDS-3, GPS, and Galileo[J]. Remote Sensing, 2019, 11(12): 1430. doi: 10.3390/rs11121430
    [7]
    隋心, 施闯, 徐爱功, 等. GPS/BDS接收机端系统偏差稳定性对整周模糊度固定的影响[J]. 武汉大学学报(信息科学版), 2018, 43(2): 175-182. doi: 10.13203/j.whugis20160178

    Sui Xin, Shi Chuang, Xu Aigong, et al. The Stability of GPS/BDS Inter-System Biases at the Receiver End and Its Effect on Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 175-182. doi: 10.13203/j.whugis20160178
    [8]
    党亚民, 张龙平, 陈俊勇. 多GNSS系统精密定轨ISB/IFB估计及特性分析[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2079-2084. doi: 10.13203/j.whugis20180279

    Dang Yamin, Zhang Longping, Chen Junyong. ISB/IFB Estimation and Characteristic Analysis with Multi-GNSS Precise Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2079-2084. doi: 10.13203/j.whugis20180279
    [9]
    吴明魁, 刘万科, 张小红, 等. GPS/Galileo/BDS-3试验星短基线紧组合相对定位性能初步评估[J]. 武汉大学学报(信息科学版), 2020, 45(1): 13-20. doi: 10.13203/j.whugis20180269

    Wu Mingkui, Liu Wanke, Zhang Xiaohong, et al. Initial Assessment of Tightly Combined Relative Positioning for Short Baselines with Observations from GPS, Galileo, and BDS-3 Experimental Satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 13-20. doi: 10.13203/j.whugis20180269
    [10]
    Gao W, Meng X L, Gao C F, et al. Combined GPS and BDS for Single-Frequency Continuous RTK Positioning Through Real-Time Estimation of Differential Inter-System Biases[J]. GPS Solutions, 2018, 22(1): 20.
    [11]
    Odijk D, Nadarajah N, Zaminpardaz S, et al. GPS, Galileo, QZSS and IRNSS Differential ISBs: Estimation and Application[J]. GPS Solutions, 2017, 21(2): 439-450.
    [12]
    Paziewski J, Wielgosz P. Accounting for Galileo–GPS Inter-System Biases in Precise Satellite Positioning[J]. Journal of Geodesy, 2015, 89(1): 81-93.
    [13]
    Gao W, Gao C F, Pan S G, et al. Inter-System Differencing Between GPS and BDS for Medium-Baseline RTK Positioning[J]. Remote Sensing, 2017, 9(9): 948.
    [14]
    Nadarajah N, Teunissen P J G, Sleewaegen J M, et al. The Mixed-Receiver BeiDou Inter-Satellite-Type Bias and Its Impact on RTK Positioning[J]. GPS Solutions, 2015, 19(3): 357-368.
    [15]
    Tian Y M, Liu Z Z, Ge M R, et al. Multi-Dimensional Particle Filter-Based Estimation of Inter-System Phase Biases for Multi-GNSS Real-Time Integer Ambiguity Resolution[J]. Journal of Geodesy, 2019, 93(7): 1073-1087.
    [16]
    Mi X L, Zhang B C, Yuan Y B. Multi-GNSS Inter-System Biases: Estimability Analysis and Impact on RTK Positioning[J]. GPS Solutions, 2019, 23(3): 81.
    [17]
    Odolinski R, Teunissen P G, Odijk D. Combined GPS + BDS for Short to Long Baseline RTK Positioning[J]. Measurement Science and Technology, 2015, 26(4): 045801.
    [18]
    Deng C L, Tang W M, Liu J N, et al. Reliable Single-Epoch Ambiguity Resolution for Short Baselines Using Combined GPS/BeiDou System[J]. GPS Solutions, 2014, 18(3): 375-386.
    [19]
    Odolinski R, Teunissen P J G, Odijk D. Combined BDS, Galileo, QZSS and GPS Single-Frequency RTK[J]. GPS Solutions, 2015, 19(1): 151-163.
    [20]
    Odolinski R, Teunissen P J G, Odijk D. First Combined COMPASS/BeiDou-2 and GPS Positioning Results in Australia. Part II: Single- and Multiple-Frequency Single-Baseline RTK Positioning[J]. Journal of Spatial Science, 2014, 59(1): 25-46.
    [21]
    Teunissen P J G. The Least-Squares Ambiguity Decorrelation Adjustment: A Method for Fast GPS Integer Ambiguity Estimation[J]. Journal of Geodesy, 1995, 70(1): 65-82.
    [22]
    Odijk D, Teunissen P J G. Characterization of Between-Receiver GPS-Galileo Inter-System Biases and Their Effect on Mixed Ambiguity Resolution[J]. GPS Solutions, 2013, 17(4): 521-533.
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return