AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091
Citation: AN Xiangdong, CHEN Hua, JIANG Weiping, XIAO Yugang, ZHAO Wen. GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 690-698. DOI: 10.13203/j.whugis20170091

GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis

Funds: 

The National Science Fundation for Distinguished Young Scholars 41525014

Changjiang Scholars Program 

the Surveying and Mapping Basic Research Program of National Administration of Surveying, Mapping and Geoinformation 15-02-01

More Information
  • Author Bio:

    AN Xiangdong, PhD candidate, specializes in combined precise data processing of multi-GNSS. E-mail:xdan@whu.edu.cn

  • Corresponding author:

    JIANG Weiping, PhD, professor. E-mail: wpjiang@whu.edu.cn

  • Received Date: September 09, 2017
  • Published Date: May 04, 2019
  • Frequency division multiplexing of GLONASS signals causes interfrequency bias(IFB) in the receiving equipment. IFB significantly prevents GLONASS ambiguity resolution and limits the accuracy and reliability of GLONASS positioning and orbit determination. Therefore, we present a new method for GLONASS ambiguity resolution. Firsly, it weakens the influence of inter-frequency code bias, and widelane ambiguities are calculated directly based on the wide-lane combined observations. Then, according to the range of inter-frequency phase bias rate, a step-by-step search schedule is designed to remove the im-pacts of inter-frequency phase bias on wide-lane and narrow-lane ambiguities. Finally, the ambiguity resolution can be achieved successfully. An IGS experiment network is carried out to verify the validity of this method. Experimental results show that the maximum, minimum and mean success rate of fixed ambiguities within the month were 95.4%, 88.8% and 93.45%, respectively. After ambiguity resolution, the repeatability and root mean square error (RMSE) of N, E, U components were improved; especially for E component, the repeatability and RMSE were improved 20% and 14%, respectively. This proves the validity of this method.
  • [1]
    Leick A, Rapoport L, Tatarnikov D. GPS Satellite Surveying[M]. Hoboken: John Wiley and Sons, 1995
    [2]
    Pratt M, Burke B, Misra P. Single-Epoch Integer Ambiguity Resolution with GPS-GLONASS L1-L2 Data[J]. Approach Control, 1999, 11(69): 691-699
    [3]
    Wang J. An Approach to GLONASS Ambiguity Resolution[J]. Journal of Geodesy, 2000, 74(5): 421-430 doi: 10.1007/s001900000096
    [4]
    张永军, 徐绍铨, 王泽民, 等. GPS/GLONASS组合定位中模糊度的处理[J].武汉大学学报·信息科学版, 2001, 26(1):58-63 http://ch.whu.edu.cn/CN/abstract/abstract5039.shtml

    Zhang Yongjun, Xu Shaoquan, Wang Zemin, et al. Ambiguity Processing Approach in Combined GPS/GLONASS Positioning[J]. Geomatics and Information Science of Wuhan University, 2001, 26(1): 58-63 http://ch.whu.edu.cn/CN/abstract/abstract5039.shtml
    [5]
    Wanninger L. Carrier-Phase Inter-Frequency Biases of GLONASS Receivers[J]. Journal of Geodesy, 2012, 86(2): 139-148 doi: 10.1007/s00190-011-0502-y
    [6]
    Sleewagen J, Simsky A, Wilde W D, et al. Demystifying GLONASS Inter-Frequency Carrier Phase Biases[J]. Inside GNSS, 2012, 7(3): 57-61
    [7]
    Banville S, Collins P, Lahaye F. Concepts for Undifferenced GLONASS Ambiguity Resolution[C]. ION GNSS the 26th International Technical Meeting of the Satellite Division, Nashville, TN, USA, 2013
    [8]
    Reussner N, Wanninger L. GLONASS Inter-Frequency Biases and Their Effects on RTK and PPP Carrier-Phase Ambiguity Resolution[C]. The 24th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, Oregon, USA, 2011
    [9]
    Shi C, Yi W, Song W, et al. GLONASS Pseudorange Inter-Channel Biases and Their Effects on Combined GPS/GLONASS Precise Point Positioning[J]. GPS Solutions, 2013, 17(4): 439-451 doi: 10.1007/s10291-013-0332-x
    [10]
    Tian Y, Ge M, Neitzel F. Particle Filter-Based Estimation of Inter-Frequency Phase Bias for Real-Time GLONASS Integer Ambiguity Resolution[J]. Journal of Geodesy, 2015, 89(11): 1145-1158 doi: 10.1007/s00190-015-0841-1
    [11]
    Geng J, Bock Y. GLONASS Fractional-Cycle Bias Estimation Across Inhomogeneous Receivers for PPP Ambiguity Resolution[J]. Journal of Geodesy, 2016, 90(4): 379-396 doi: 10.1007/s00190-015-0879-0
    [12]
    Cai C, Gao Y. Modeling and Assessment of Combined GPS/GLONASS Precise Point Positioning[J]. GPS Solutions, 2013, 17(2): 223-236 doi: 10.1007/s10291-012-0273-9
    [13]
    Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations[J]. Journal of Geodesy, 2008, 82(7): 389-399 doi: 10.1007/s00190-007-0187-4
    [14]
    Hernández-Pajares M, Juan J M, Sanz J, et al. The IGS VTEC Maps: A Reliable Source of Ionospheric Information Since 1998[J]. Journal of Geodesy, 2009, 83(3/4): 263-275 http://cn.bing.com/academic/profile?id=9e5f3494180c6f5086e6a1aea3f40b5d&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    Liu J, Ge M. PANDA Software and Its Preliminary Result of Positioning and Orbit Determination[J]. Wuhan University Journal of Natural Sciences, 2003, 8(2): 603-609 doi: 10.1007/BF02899825
    [16]
    Dong D N, Bock Y. Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 3949-3966 doi: 10.1029/JB094iB04p03949
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]JIA Yan, JIN Shuanggen, XIAO Zhiyu, YAN Qingyun, PEI Yuekun. Soil Moisture Remote Sensing Using Global Navigation Satellite System-Reflectometry: Current Status and Opportunity[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1784-1799. DOI: 10.13203/j.whugis20230253
    [3]MA Xiaoxue, DAI Xiaolei, LIU Yang, LOU Yidong, LIU Wanke, WU Di. Ultra-rapid Orbit Determination of GLONASS Satellite After Ambiguity is Fixed[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1932-1940. DOI: 10.13203/j.whugis20210260
    [4]ZHAO Danning, LEI Yu. Long-Term Characteristics Analysis of GLONASS In-Flight Clocks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 895-904. DOI: 10.13203/j.whugis20190233
    [5]XU Lei, CHANG Guobin, GAO Jingxiang, YANG Xu. Estimation of BDS DCB Based on Closure Constraint[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 520-529. DOI: 10.13203/j.whugis20190187
    [6]WU Mingkui, LIU Wanke, ZHANG Xiaohong, TIAN Wenwen. Initial Assessment of Tightly Combined Relative Positioning for Short Baselines with Observations from GPS, Galileo, and BDS-3 Experimental Satellites[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 13-20. DOI: 10.13203/j.whugis20180269
    [7]XU Yangyin, YANG Yuanxi, HE Haibo, LI Jinlong, TANG Bin, ZHANG Linfeng. Quality Analysis of the Range Measurement Signals of Test Satellites in BeiDou Global System[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1214-1221. DOI: 10.13203/j.whugis20160219
    [8]ZENG Anmin, YANG Yuanxi, JING Yifan, MING Feng. Systematic Bias Compensation Model of Inter-system Bias and Its Performance Analysis for BDS/GPS Fusion Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1423-1430. DOI: 10.13203/j.whugis20150808
    [9]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [10]GAO Wang, GAO Chengfa, PAN Shuguo, SHANG Rui, DENG Jiadong. Fast Ambiguity Resolution Between GPS/GLONASS/BDS Combined Long-range Base Stations Based on Partial-fixing Strategy[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 558-562. DOI: 10.13203/j.whugis20140945
  • Cited by

    Periodical cited type(7)

    1. 叶送,高东强,殷建政. TBC 4.10与GAMIT 10.7在GPS数据处理中的对比与应用研究. 测绘与空间地理信息. 2024(10): 160-163 .
    2. 曹士龙,刘根友,王生亮,高铭,尹翔飞. GPS超长基线解算的误差特性与精度分析. 武汉大学学报(信息科学版). 2023(02): 260-267 .
    3. 李博,程鹏飞,秘金钟,徐彦田,祝会忠,高猛,谷守周. 一种北斗非差非组合长距离基准站模糊度解算方法. 武汉大学学报(信息科学版). 2023(04): 593-603 .
    4. 涂锐,张鹏飞,张睿,范丽红,韩军强,王思遥,卢晓春. GNSS载波相位精密时间传递数据处理技术综述. 全球定位系统. 2023(02): 1-9 .
    5. 李克昭,田晨冬. M-Cholesky分解法快速求解GNSS整周模糊度. 大地测量与地球动力学. 2023(08): 771-774+808 .
    6. 祝会忠,路阳阳,徐爱功,李军. 长距离GPS/BDS双系统网络RTK方法. 武汉大学学报(信息科学版). 2021(02): 252-261 .
    7. 马小雪,戴小蕾,刘杨,楼益栋,刘万科,吴迪. 固定模糊度的GLONASS卫星超快速轨道确定. 武汉大学学报(信息科学版). 2021(12): 1932-1940 .

    Other cited types(4)

Catalog

    Article views (1574) PDF downloads (191) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return