Citation: | XU Guozhen, REN Xiaodong, ZHANG Xiaohong. Quality Analysis Of Multi-GNSS OSB Products from CNES and Its Performance Evaluation of Real-Time Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230376 |
[1] |
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102, 5005-5017.
|
[2] |
Kouba, J., Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5, 12-28.
|
[3] |
张小红, 李星星, 李盼(2017). GNSS精密单点定位技术及应用进展. 测绘学报, 46,9.( Zhang, X., Li, X., Li, P. (2017). Review of GNSS PPP and Its Application. Acta Geodaetica et Cartographoca Sinica. 46,9)
|
[4] |
Yang, F., Zhao, L., Li, L., Feng, S., Cheng, J. (2019). Performance evaluation of kinematic BDS/GNSS real-time precise point positioning for maritime positioning. The Journal of Navigation, 72, 34-52.
|
[5] |
Elsobeiey, M., Al-Harbi, S. (2016). Performance of real-time Precise Point Positioning using IGS real-time service. GPS Solutions, 20, 565-571.
|
[6] |
Alcay, S., Turgut, M. (2021). Evaluation of the positioning performance of multi-GNSS RT-PPP method. Arabian Journal of Geosciences, 14, 1-19.
|
[7] |
Li, B., Ge, H., Bu, Y., Zheng, Y., Yuan, L. (2022). Comprehensive assessment of real-time precise products from IGS analysis centers. Satellite Navigation, 3, 12.
|
[8] |
Laurichesse, D., Blot, A. (2016). Fast PPP convergence using multi-constellation and triple-frequency ambiguity resolution. In Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+2016)(pp. 2082-2088).
|
[9] |
Kazmierski, K., Hadas, T., Sośnica, K. (2018). Weighting of multi-GNSS observations in real-time precise point positioning. Remote Sensing, 10, 84.
|
[10] |
Liu, T., Zhang, B., Yuan, Y., Li, M. (2018). Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling. Journal of Geodesy, 92, 1267-1283.
|
[11] |
苏春阳, 舒宝, 郑蕾, 田云青, 雷体俊, 穆雪枫, 王利(2023). GPS/BDS实时SSR产品质量评估及其PPP性能分析. 武汉大学学报(信息科学版), 1-14.( Su C., Shu B., Zheng L., et al. (2023). Quality evaluation and PPP performance analysis of GPS/BDS real-time SSR products. Geomatics and Information Science of Wuhan University, 1-14)
|
[12] |
Ge, M., Gendt, G., Rothacher, M. A., Shi, C., Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82, 389- 399.
|
[13] |
Laurichesse, D., Mercier, F., Berthias, J. P., Broca, P., Cerri, L. (2009). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation-Journal of the Institute of Navigation, 56, 135-149.
|
[14] |
Collins, P., Bisnath, S., Lahaye, F., Héroux, P. (2010). Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation-Journal of the Institute of Navigation, 57, 123-135.
|
[15] |
Ren, X., Chen, J., Li, X., Zhang, X. (2020). Multi-GNSS contributions to differential code biases determination and regional ionospheric modeling in China. Advances in Space Research, 65, 221- 234.
|
[16] |
Hu, J., Zhang, X., Li, P., Ma, F., Pan, L. (2020). Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University. GPS Solutions, 24, 1-13.
|
[17] |
Schaer, S. (2016). Bias-SINEX format and implications for IGS bias products. In IGS Workshop(pp. 8-12).
|
[18] |
Schaer, S., Villiger, A., Dach, R., Prange, L., Jäggi, A., Arnold, D. (2018). New ambiguity-fixed IGS clock analysis products at CODE.
|
[19] |
Melbourne, W. G. (1985). The case for ranging in GPS-based geodetic systems. In Proceedings of the first international symposium on precise positioning with the Global Positioning System(pp. 373-386).
|
[20] |
Wübbena, G. (1985). Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In Proceedings of the first international symposium on precise positioning with the global positioning system(Vol. 19, pp. 403-412).
|
[21] |
Li, X., Li, X., Jiang, Z., Xia, C., Shen, Z., Wu, J. (2022). A unified model of GNSS phase/code bias calibration for PPP ambiguity resolution with GPS, BDS, Galileo and GLONASS multi-frequency observations. GPS Solutions, 26, 84.
|
[22] |
Du, S., Shu, B., Xie, W., Huang, G., Ge, Y., Li, P. (2022). Evaluation of Real-time Precise Point Positioning with Ambiguity Resolution Based on Multi-GNSS OSB Products from CNES. Remote Sensing, 14, 4970.
|
[23] |
Hatch, R. (1983). The synergism of GPS code and carrier measurements. In International geodetic symposium on satellite doppler positioning(Vol. 2, pp. 1213-1231).
|
[24] |
Liu, T., Jiang, W., Laurichesse, D., Chen, H., Liu, X., Wang, J. (2020). Assessing GPS/Galileo realtime precise point positioning with ambiguity resolution based on phase biases from CNES. Advances in Space Research, 66, 810-825.
|
[25] |
Geng, J. (2009). Rapid Re-convergence in Real-time Precise Point Positioning with Ambiguity Resolution. In Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009)(pp. 2437-2448).
|
[26] |
Li, X., Ge, M., Zhang, H., Wickert, J. (2013). A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. Journal of Geodesy, 87, 405-416.
|
[27] |
Liu, X., Goode, M., Tegedor, J., Vigen, E., Oerpen, O., Strandli, R. (2015). Real-time multiconstellation precise point positioning with integer ambiguity resolution. In 2015 International association of institutes of navigation world congress (IAIN)(pp. 1-7).
|
[28] |
Temiissen, J. G. (1995). The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. Journal of Geodesy, 70, 65-82.
|
[29] |
Qin, H., Liu, P., Cong, L., Xue, X. (2020). Ambiguity of Residual Constraint-Based Precise Point Positioning with Partial Ambiguity Resolution under No Real-Time Network Corrections Using Real Global Positioning System (GPS) Data. Sensors, 20, 3220.
|
[30] |
闫忠宝, 张小红(2022). GNSS非组合PPP部分模糊度固定方法与结果分析. 武汉大学学报(信息科学版), 47, 979-989.( Yan Z., Zhang X.. (2022). Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP.Geomatics and Information Science of Wuhan University, 47, 979-989)
|
[31] |
Kouba, J. (2009). A guide to using International GNSS Service (IGS) products.
|
[32] |
Loyer, S., Banville, S., Geng, J., Strasser, S. (2021). Exchanging satellite attitude quaternions for improved GNSS data processing consistency. Advances in Space Research, 68, 2441-2452.
|
[33] |
Wu, J., Wu, S. C., Hajj, G. A., Bertiger, W. I., Lichten, S. M. (1992). Effects of antenna orientation on GPS carrier phase. Astrodynamics 1991, 1647-1660.
|
[34] |
尹潇, 柴洪洲, 齐文龙, 肖国锐(2022). Galileo校正卫星天线参数特性及对PPP定位的影响. 武汉大学学报(信息科学版), 47, 526-532.( Yin X.,Chai H.,Qi W., et al. (2022). Characteristics of Galileo Calibrated Satellite Antenna Parameter and Their Impacts on Precise Point Positioning. Geomatics and Information Science of Wuhan University, 1-14)
|
[35] |
Zhang, L., Yang, H., Gao, Y., Yao, Y., Xu, C. (2018). Evaluation and analysis of real-time precise orbits and clocks products from different IGS analysis centers. Advances in Space Research, 61, 2942-2954.
|
[36] |
Wang, J., Zhang, Q., Huang, G. (2021). Estimation of fractional cycle bias for GPS/BDS-2/Galileo based on international GNSS monitoring and assessment system observations using the uncombined PPP model. Satellite Navigation, 2, 1-11.
|
[37] |
Wang, J., Huang, G., Yang, Y., Zhang, Q., Gao, Y., Xiao, G. (2019). FCB estimation with three different PPP models: Equivalence analysis and experiment tests. Gps Solutions, 23, 1-14.
|
[1] | CUI Zhixiang, LAN Chaozhen, ZHANG Yongxian, HOU Huitai, QIN Jianqi. A Method Based on Depth Features for Matching Thermal Infrared Images with Visible Images[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2): 316-324. DOI: 10.13203/j.whugis20200181 |
[2] | TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176 |
[3] | SONG Zhina, SUI Haigang, LI Yongcheng. A Survey on Ship Detection Technology in High-Resolution Optical Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703-1715. DOI: 10.13203/j.whugis20200481 |
[4] | XIANG Tianzhu, GAO Rongrong, YAN Li, XU Zhenliang. Region Feature Based Multi-scale Fusion Method for Thermal Infrared and Visible Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 911-917. DOI: 10.13203/j.whugis20141007 |
[5] | Shao Zhenfeng, Bai Yun, Zhou Xiran. Improved Multi-scale Retinex Image Enhancement of UnderPoor Illumination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 32-39. |
[6] | WANG Zhijun, GU Chongshi, ZHANG Zhijun. Evaluation Method of Loss-of-life Caused by Dam Breach Based on GIS and Neural Networks Optimized by Genetic Algorithms[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 64-68. |
[7] | TIAN Jing, GUO Qingsheng, FENG Ke, MA Meng. Progressive Selection Approach of Streets Based on Information Loss[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 362-365. |
[8] | YANG Guijun, LIU Qinhuo, LIU Qiang, GU Xingfa. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 786-790. |
[9] | XING Shuai, TAN Bing, XU Qing, LI Jiansheng. A New Algorithm for Remote Sensing Image Fusion Using Complex Wavelet Transform[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 75-77. |
[10] | GONG Shengrong, YANG Shanchao. A Visible Watermarking Algorithm Holding Image Content[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 757-760. |